
Curb: Trusted and Scalable Software-Defined
Network Control Plane for Edge Computing

1

Minghui Xu#, Chenxu Wang#, Yifei Zou#, Dongxiao Yu#,
Xiuzhen Cheng# and Weifeng Lyu*

Shandong University
* Beihang University

July 9, 2022

2

Background

Application service

Control Plane

Data Plane

Southbound API

Northbound API

Controller

Switch

EDGE LAYER

CLOUD LAYER

DEVICE LAYER

Software defined network (SDN)
ü Decouple control and data plane
ü Open-programming interfaces

3

Background

Application service

Control Plane

Data Plane

Southbound API

Northbound API

Controller

Switch

EDGE LAYER

CLOUD LAYER

DEVICE LAYER

Software defined network (SDN)
ü Decouple control and data plane
ü Open-programming interfaces

Single point of failure

A pivot controller

Switches

4

Related work

Techniques Papers

Primary-backup control plane

Morph: An adaptive framework for efficient and byzantine fault-
tolerant sdn control plane, JSAC, 2018

Byzantine-besilient controller mapping and remapping in
software defined networks, TNSE, 2020

Byzantine fault tolerance (BFT)
consensus algorithm

Byzantine fault tolerant software-defined networking (sdn)
controllers, COMPSAC, 2016

Bft protocols for heterogeneous resource allocations in
distributed sdn control plane, ICC, 2019

P4bft: Hardware-accelerated byzantine-resilient network
control plane, GLOBECOM, 2019

Blockchain

Information classification strategy for blockchain-based secure
sdn in iot scenario, INFOCOM WKSHPS, 2020

A blockchain-sdn-enabled internet of vehicles environment for
fog computing and 5g networks, IoTJ, 2019

5

Related work

BFT consensus algorithms
• Controllers exchange messages to reach an

agreement on a valid decision.
ü Guarantee the state consistency between

controllers.
ü Resist attacks from byzantine nodes.

Blockchain technique
• Provide some security properties for SDN:

ü Provable security
ü Immutability
ü Traceability
ü Transparency

Primary-backup control plane
• Map each switch to f+1 primary controllers and f

back-up ones to defend against f byzantine nodes.

6

Motivation

pFor primary-backup control plane, maintaining consistent node states is still a problem to be solved.

pIntroducing BFT consensus incurs much communication overhead due to the need of massive
message exchanges.

pTraditional blockchain systems have been criticized for their low throughput.

Can we design a both trusted and scalable SDN control plane for edge computing?

7

Contribution

ü We propose Curb, a trusted and scalable SDN control plane on edge layer, which seamlessly incorporates
blockchain and BFT consensus into group-based control plane, achieving byzantine fault tolerance,
verifiability, consistency and scalability within one framework.

ü Curb provides a blockchain-secured adaptive reassignment approach for SDN control plane. So byzantine
controllers can be timely detected and then rapidly replaced with honest ones.

ü Controllers are organized into multiple groups, each taking charge of multiple switches and reaching
intra-group consensus in parallel. The message complexity of each round is reduced to O(N).

8

Functionalities of Curb

Packet-in
request

Reassignment
request

Curb

Flow table
configuration

Controller
reassignment

9

Workflow of Curb

Switch

Intra-group
consensus

Final consensus

Data Plane

Control Plane

Controller
Group

Packet-in
message

Flow table
configuration

Reassignment
message

Reassignment

Handle
request

Host

Packet-in request
Ø Step 0: A user host sends a packet to the network so that it

can be forwarded to its target host.

Ø Step 1: A switch sends a PKT-IN message to its assigned
controller group to obtain forwarding rules.

10

Workflow of Curb

Switch

Intra-group
consensus

Final consensus

Data Plane

Control Plane

Controller
Group

Packet-in
message

Flow table
configuration

Reassignment
message

Reassignment

Handle
request

Host

Packet-in request
Ø Step 0: A user host sends a packet to the network so that it

can be forwarded to its target host.
Ø Step 1: A switch sends a PKT-IN message to its assigned

controller group to obtain forwarding rules.

Ø Step 2: The group members figure out forwarding rules
and carry out the intra-group consensus process to reach
consensus on the rules. After that they send blocks to the
final committee.

11

Workflow of Curb

Switch

Intra-group
consensus

Final consensus

Data Plane

Control Plane

Controller
Group

Packet-in
message

Flow table
configuration

Reassignment
message

Reassignment

Handle
request

Host

Packet-in request
Ø Step 0: A user host sends a packet to the network so that it

can be forwarded to its target host.
Ø Step 1: A switch sends a PKT-IN message to its assigned

controller group to obtain forwarding rules.
Ø Step 2: The group members figure out forwarding rules

and carry out the intra-group consensus process to reach
consensus on the rules. After that they send blocks to the
final committee.

Ø Step 3: The final committee takes charge of the final
consensus process, where committee members reach
consensus on blocks from multiple groups. After that the
members broadcast blocks to every controller.

12

Workflow of Curb

Switch

Intra-group
consensus

Final consensus

Data Plane

Control Plane

Controller
Group

Packet-in
message

Flow table
configuration

Reassignment
message

Reassignment

Handle
request

Host

Packet-in request
Ø Step 0: A user host sends a packet to the network so that it

can be forwarded to its target host.
Ø Step 1: A switch sends a PKT-IN message to its assigned

controller group to obtain forwarding rules.
Ø Step 2: The group members figure out forwarding rules

and carry out the intra-group consensus process to reach
consensus on the rules. After that they send blocks to the
final committee.

Ø Step 3: The final committee takes charge of the final
consensus process, where committee members reach
consensus on blocks from multiple groups. After that the
members broadcast blocks to every controller.

Ø Step 4: Controllers reply to switches with forwarding
rules. Switches follow the forwarding rules to transmit
packets if the rules are valid.

13

Workflow of Curb

Switch

Intra-group
consensus

Final consensus

Data Plane

Control Plane

Controller
Group

Packet-in
message

Flow table
configuration

Reassignment
message

Reassignment

Handle
request

Host

Reassignment request
Ø Step 1: If a switch detects invalid replies, it will report the

byzantine controllers in a RE-ASS message and broadcast
the message to its assigned controller group.

14

Workflow of Curb

Switch

Intra-group
consensus

Final consensus

Data Plane

Control Plane

Controller
Group

Packet-in
message

Flow table
configuration

Reassignment
message

Reassignment

Handle
request

Host

Reassignment request
Ø Step 1: If a switch detects invalid replies, it will report the

byzantine controllers in a RE-ASS message and broadcast
the message to its assigned controller group.

Ø Step 2: The group members figure out a reassignment
scheme and carry out the intra-group consensus process to
reach consensus on the scheme. After that they send blocks
to the final committee.

15

Workflow of Curb

Switch

Intra-group
consensus

Final consensus

Data Plane

Control Plane

Controller
Group

Packet-in
message

Flow table
configuration

Reassignment
message

Reassignment

Handle
request

Host

Reassignment request
Ø Step 1: If a switch detects invalid replies, it will report the

byzantine controllers in a RE-ASS message and broadcast
the message to its assigned controller group.

Ø Step 2: The group members figure out a reassignment
scheme and carry out the intra-group consensus process to
reach consensus on the scheme. After that they send blocks
to the final committee.

Ø Step 3: The final committee takes charge of the final
consensus process, where committee members reach
consensus on blocks from multiple groups. After that the
members broadcast blocks to every controller.

16

Workflow of Curb

Switch

Intra-group
consensus

Final consensus

Data Plane

Control Plane

Controller
Group

Packet-in
message

Flow table
configuration

Reassignment
message

Reassignment

Handle
request

Host

Reassignment request
Ø Step 1: If a switch detects invalid replies, it will report the

byzantine controllers in a RE-ASS message and broadcast
the message to its assigned controller group.

Ø Step 2: The group members figure out a reassignment
scheme and carry out the intra-group consensus process to
reach consensus on the scheme. After that they send blocks
to the final committee.

Ø Step 3: The final committee takes charge of the final
consensus process, where committee members reach
consensus on blocks from multiple groups. After that the
members broadcast blocks to every controller.

Ø Step 4: Controllers reply to switches with the
reassignment scheme. If the scheme is valid, controllers
and switches will reconfigure the controller-to-controller
(C2C) and controller-to-switch (C2S) links.

17

Analysis

Message complexity
• The number of groups: k
• The average group size: c
• The number of controllers: N

üStep 1: 𝑂(𝑁)
üStep 2: 𝑂 𝑘𝑐! + 𝑂(𝑁𝑐)
üStep 3: 𝑂 𝑐! + 𝑂(𝑐𝑁)
üStep 4: 𝑂(𝑁)

Switch

Intra-group
consensus

Final consensus

Data Plane

Control Plane

Controller
Group

Packet-in
message

Flow table
configuration

Reassignment
message

Reassignment

Handle
request

Host

The message complexity of Curb is O(N),
where N is the number of SDN controllers.

𝑶 𝑵 = 𝑶(𝒌×𝒄)

18

Analysis

The controller assignment problem (CAP)

The objectives
of CAP

Efficient resource
utilization

Security Scalability

19

Analysis

The controller assignment problem (CAP)

min+
"∈$

𝑥"

1
𝑁+

%∈&

𝐴%" ≤ 𝑥" ≤ 1 ∀𝑗 ∈ 𝐶

+
%∈&

𝐴%"𝑄% ≤ 𝐶" ∀𝑗 ∈ 𝐶

+
"∈$

𝐴%" ≥ 𝐵% ∀𝑖 ∈ 𝑆

𝐴%"𝑑%" ≤ 𝐷',) ∀𝑖 ∈ 𝑆, ∀𝑗 ∈ 𝐶
𝐴%"𝐴%"!𝑑%"! ≤ 𝐷',' 𝑗 ≠ 𝑗*, ∀𝑗, 𝑗* ∈ 𝐶, ∀𝑖 ∈ 𝑆

Minimizing the number of
used controllers

Maximizing the utilization
of each controller

Efficient resource
utilization

Security: the size of each controller group should be
more than 3f+1, where f is the maximum number of

faulty nodes in a group.

Scalability: reducing the C2C and C2S link delay in
each group.

[𝑂1]

[𝐶1.1]

[𝐶1.2]

[𝐶1.3]
[𝐶1.4]

20

Analysis

The controller reassignment problem

𝑥" = 0 ∀𝑗 ∈ 𝐶+,-

𝐴%" = 1 ∀ 𝑖, 𝑗 ∈ 𝐿𝐸𝐴𝐷𝐸𝑅

LCR：min +
"∈$

𝑥" + +
"∈$∧%∈&

𝐴%" − 𝑎%"

TCR：min+
"∈$

𝑥"

Removing byzantine nodes

Fixing honest leader nodes

Minimizing the number of used controllers

Minimizing the number of changed links

Minimizing the number of used controllers

[𝐶2.5]

[𝐶2.6]

[𝑂3]

[𝑂2]

21

Evaluation

Experiment configuration
üMininet + Ryu
ü Internet2 network (16 controllers, 34 switches)
üGurobi optimizer

Tests on:
üCurb’s capability of defending against byzantine nodes;
üThe performance of handling the packet-in requests;
üThe performance of two types of optimization programming solvers for controller reassignment;
üThe performance of handling the reassignment requests.

Internet2 topology

22

Evaluation

Byzantine resilience test
• Experiment ❶: one byzantine node does not respond to any request

starting from the 5th round, and is removed in the 6th round.
• Experiment ❷: three byzantine nodes do not respond to any request

starting from the 10th round, and are removed in the 11th round.
• Experiment ❸: three lazy nodes respond to requests slowly starting

from the 15th round, and are removed in the 21th round. (a) Latency vs. round

Remarks
ü Fault-tolerant resilience;
ü Latency: 460.24 ms and throughput: 71.90 TPS;
ü The parallel processing mode significantly
improves the throughput.

(b) Throughput vs. round
(non-parallel)

(c) Throughput vs. round
(parallel)

23

Evaluation

Performance of handling the packet-in requests
• How is the performance impacted by the network scale?

• The number of switches
• The value of f

(a) Latency vs. the
number of switches

(b) Throughput vs. the
number of switches

(c) Latency vs. f (d) Throughput vs. f

Remarks
ü The latency slightly increases with the number
of switches and the value of f.
ü The throughput linearly increases with the
number of switches.
ü The throughput slightly decreases with the
value of f.

24

Evaluation

Performance of the optimization programming

Time cost vs. 𝑫𝒄,𝒔
• Compare TCR and LCR with varying 𝐷',) under different

combinations of the following constraints.

𝐴%"𝐴%"!𝑑%"! ≤ 𝐷',' (the upper bound of C2C link delay)

𝐴%" = 1 ∀ 𝑖, 𝑗 ∈ 𝐿𝐸𝐴𝐷𝐸𝑅 (fixing leader nodes) (a) With the leader constraint

Remarks

(b) With the 𝐷!,! constraint

(c) Without the leader and
𝐷!,! constraints

(d) With the leader and
𝐷!,! constraints

LCR costs a little more time than TCR.
The 𝐷',' constraint leads to significant
time overheads.

Nonlinearity

[𝐶2.4]

[𝐶2.6]

25

Evaluation

Performance of the optimization programming

The number of used controllers vs. 𝑫𝒄,𝒔
• Compare TCR and LCR with varying 𝐷',) under different

combinations of the following constraints.

𝐴%"𝐴%"!𝑑%"! ≤ 𝐷',' (the upper bound of C2C link delay)

𝐴%" = 1 ∀ 𝑖, 𝑗 ∈ 𝐿𝐸𝐴𝐷𝐸𝑅 (fixing leader nodes) (a) With the leader constraint (b) With the 𝐷!,! constraint

(c) Without the leader and
𝐷!,! constraints

(d) With the leader and
𝐷!,! constraints

Remarks
ü The TCR and LCR methods output the same number of
controllers being used.
ü Less controllers is used if 𝐷',) is higher.
üAdding the 𝐷',' constraint can result in more controllers
enrolled.

[𝐶2.4]

[𝐶2.6]

26

Evaluation

Performance of the optimization programming

The percentage of dynamic links (PDL) vs. 𝑫𝒄,𝒔
• Compare TCR and LCR with varying 𝐷',) under different

combinations of the following constraints.

𝐴%"𝐴%"!𝑑%"! ≤ 𝐷',' (the upper bound of C2C link delay)

𝐴%" = 1 ∀ 𝑖, 𝑗 ∈ 𝐿𝐸𝐴𝐷𝐸𝑅 (fixing leader nodes) (a) With the leader constraint (b) With the 𝐷!,! constraint

(c) Without the leader and
𝐷!,! constraints

(d) With the leader and
𝐷!,! constraints

Remarks

ü Less links are changed with a lower 𝐷',).
ü LCR has better performance of PDL than TCR.
ü Bringing the leader constraint can result in less PDL.

[𝐶2.4]

[𝐶2.6]

27

Evaluation

Performance of handling the reassignment requests

(a) Latency vs. the
number of switches

(b) Throughput vs. the
number of switches

(c) Latency vs. f (d) Throughput vs. f

• How is the performance impacted by the network
scale, when the system handles a large number of
reassignment requests?
• The number of switches
• The value of f

Remarks
ü The latency with TCR and LCR solvers is very close
with the increasing number of switches.
ü The extra time cost of LCR compared to TCR become
more explicit with a higher f.
ü The throughput still linearly increases with the number
of switches and slightly decreases with the value of f.

28

Conclusion

ü We present Curb, a novel SDN control plane scheme that seamlessly integrates blockchain and BFT
consensus into a group-based control plane, addressing security and scalability concerns of the state-of-
the-arts.

ü Curb supports trusted flow rule updates and adaptive controller reassignment.

ü Curb uses a group-based technique to realize a scalable network where the message complexity of each
round is upper bounded by O(N).

29

Q&A

Thank you for your listening!

