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Abstract—Blockchain systems can become overwhelmed by a
large number of transactions, leading to increased latency. As
a consequence, latency-sensitive users must bid against each
other and pay higher fees to ensure that their transactions are
processed in priority. However, most of the time of a blockchain
system (78% in Ethereum), there is still a lot of unused compu-
tational power, with few users sending transactions. To address
this issue and reduce latency for users, we propose the latency-
first smart contract model in this paper, which optimistically
accepts committed transactions. This allows users to submit a
commitment during times of high demand, and then complete
the rest of the work at a lower priority. From the perspective of
the blockchain, this temporarily “overclocks” the system. We
have developed a programming tool for our model, and our
experiments show that the proposed latency-first smart contract
model can greatly reduce latency during the periods of high
demand.

Index Terms—latency-first smart contract, Ethereum,
blockchain

I. INTRODUCTION

With the growing popularity of blockchain platforms, trans-
action latency becomes a bottleneck leading to a poor user ex-
perience. This latency issue matters in both permissionless and
permissioned chains. Ethereum developers found that during
a busy time, only a small proportion of transactions get con-
firmed into the incoming block, causing others to wait for the
demand to decrease before being included and thus resulting
in a frustrating user experience [1]; as a consequence, latency-
sensitive users have to bid against each other and pay higher
fees to miners in order for their transactions to be processed in
priority. Performance test results of Hyperledger Fabric [2], [3]
also demonstrate that the workload of a blockchain system
strongly affects latency, and latency can increase significantly
when the number of transactions exceeds its capacity. Many
efforts have been made to address this latency issue and
improve user experience. On-chain scaling techniques such as
sharding [4], [5] and paralleling [6], [7], [8] reduce latency
by providing additional computing resources and increasing
throughput of the chain. Off-chain scaling techniques such
as state channels [9], [10], [11], Plasma [12], and optimistic
rollups [13] allow users to send their transactions to state
channels or child chains for preventing the main chain from
being overwhelmed.
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Fig. 1. The distribution of transactions and gas in 100, 000 blocks.

In this paper, we present a latency-first smart contract
scheme that intends to solve the latency issue by an approach
without introducing additional machines and computing re-
sources – our idea is to rebalance the computing tasks with
time to increase blockchain utilization. Our statistical analysis
of the load distribution based on the recent 100, 000 blocks in
Ethereum1, as shown in Fig. 1, indicates that the blockchain
does not consistently operate at maximum capacity. After
London Upgrade, the maximum block gas limit (the maximum
computational capability of the Ethereum network) is about
30 M. Fig. 1(a) indicates that only 21.79% of the blocks use
more than 28 M gas, which is close to the maximum block
gas limit and therefore can not process more transactions, and
the remaining 78.21% of the blocks have a significant amount
of available computational capacity. Fig. 1(b) illustrates that
94.97% of the blocks contain fewer than 400 transactions,
while 0.03% contain more than 1, 000 transactions. This result
indicates that a block can contain more transactions if it
requires a significantly little gas to process. In conclusion, the
transactions are not balanced with time, leading to periods of
low utilization and heavy load on the blockchain. During times
of high demands, more delays are expected for users because
of the increased gas consumption of the transactions. Of
course, a blockchain system is unable to control the time when
a user prefers to send a transaction. It would be helpful if there
exists a way to temporarily increase the performance, similar
to the concept of overclocking in traditional computing. This is
what our proposed latency-first smart contract model does. It
optimistically accepts committed transactions, enabling users
to “promise” to provide the proof of a transaction at a later

1We collected the data on May 06 2022. The heights of the recent 100, 000
blocks are 14622039 – 14722038 (Apr. 20 2022 – May 06 2022). https:
//github.com/SDU-IIC-Blockchain/ethereum-tx-distribution-analyze
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time. By doing so, the load on the network can be balanced
over time and the latency can be reduced.
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Fig. 2. The workflow of a smart contract on a heavy loaded blockchain, with
and without our proposed latency-first model.

Fig. 2 illustrates the workflow of a smart contract on a
heavily loaded blockchain. In this example, Alice sells an item
to Bob in exchange for money (Transaction 1) and then uses
that money to purchase another item from Carol (Transaction
2). However, due to a heavy load on the blockchain, it takes
10 blocks for Transaction 1 to be confirmed, which is much
longer than the typical 1 block confirmation time. In our
proposed model, Alice and Bob can submit a commitment
(Commitment 1) instead of a regular transaction during the
heavy load time to reduce latency. Commitments can often
be confirmed within 1 or 2 blocks because they require fewer
resources to process. Alice can then make Commitment 2 with
Carol. To prove Commitment 1, Alice sends a transaction in
low priority. The major challenge in designing such a latency-
first smart contract model is to allow a large number of
users to submit commitments simultaneously without creating
unnecessary dependencies, as well as to address the issues that
may happen when a party refuses to prove a commitment.

Challenges and contributions are summarized as follows:
• Reduce latency and balance loads. A blockchain system

usually has spare capabilities to handle more transactions
in a majority of the time, but sometimes it is overwhelmed
with a large number of transactions. The loads are not
balanced with time, which can lead to the increased
latency during periods of high demands. Our model
aims to balance the blockchain computational resources,
making it resilient to high-frequency requests in short
periods of time. This improves utilization during periods
of low demands and reduces latency during periods of
high demands.

• Avoid unnecessary data conflicts and reduce the im-
pact of revocations. A smart contract model that op-
timistically accepts committed transactions allows users
to change the contract state in advance and “promise”
to prove a transaction at a later time. An unproved
transaction causes a revocation that rolls back the contract
state. However, during the time it takes for a latency-
first transaction to be proved or revoked (which could
take several hours or even days), the contract state may

have changed due to other transactions, leading to data
conflicts. In our proposed latency-first smart contract
model, a contract has independent states managed by
users. This allows future transactions not to rely on
unrelated transaction commitments, thereby reducing the
influence of revocations.

• Provide a friendly programming tool. In order to ef-
fectively develop smart contracts that follow the latency-
first model, a developer-friendly compiler is necessary.
By providing a friendly programming tool, we aim to
make it easier for developers to create and deploy smart
contracts that follow our proposed latency-first model.

The paper is organized as follows: In Sec. II, we introduce
the most related work and provide the necessary background
information. In Sec. III, we propose our latency-first smart
contract model and perform the security analysis. In Sec. IV,
we introduce the programming tool and demonstrate the
performance evaluation. Finally, we provide a conclusion in
Sec. V.

II. RELATED WORK AND PRELIMINARIES

A. Related Work

We overview the related work focusing on scalability, opti-
mistic techniques, and modifiable blockchain.

Scalability Techniques. More computational resources can
be added to a blockchain system, thereby increasing its
throughput to reduce latency. Such techniques include shard-
ing, concurrent execution, and state channels. Huang et al. [5]
addressed the hot-shard issue to reduce cross-shard transac-
tions, resulting in an improved system throughput and de-
creased transaction confirmation latency. Qi et al. created a
shepherded parallel workflow [7] for permissioned blockchain
networks to replace the sequential workflow and increase
throughput. Chen et al. proposed SChain [8], which provides
intra-block concurrency and inter-block concurrency, leverag-
ing the capacity of multi-core processors and multiple peers to
enable simultaneous processing. Dziembowski et al. presented
a general state channel network [9] to allow the execution of
arbitrary complex smart contracts as off-chain protocols, in
which a massive amount of transactions are executed without
requiring the costly interactions with the blockchain, resulting
in latency reduction.

Optimistic Techniques. Our latency-first model optimisti-
cally accepts pending transactions. This concept has also been
applied in Layer-2 network and BFT consensus. Optimistic
rollup [13] improves blockchain scalability by not requiring
any computation by default but relying on fraud proofs to
prevent invalid state transitions from happening. Kotla et al.
presented Zyzzyva [14], using speculation to reduce the cost
and simplify the design of BFT state machine replication.

Modifiable Blockchain. Modifiable blockchain shares the
same revocation challenges as our latency-first model, as
revoking previous transactions may have a significant impact
on successors. Most works focus on replacing a block or
transaction by only editing the text data that does not affect



other transactions, thereby bypassing the revocation issue.
Ateniese et al. proposed a framework [15] to re-write blocks
and remove inappropriate contents. Deuber et al. developed
an efficient redactable blockchain under the permissionless set-
ting [16] by consensus-based voting. They noted that removing
a transaction entirely may result in serious inconsistencies in
the chain; thus only redactions that do not affect a transaction’s
consistency are allowed to be modified.

B. Preliminaries

1) Blockchain: A blockchain is a decentralized and append-
only database, consisting of blocks, which are appended
periodically after consensus. Each block contains a number
of transactions, which are validated by miners and stored
by full nodes. Denote itv as the block interval, i.e the time
interval between two contiguous blocks. Note that itv varies
in a small proportion, the average of which is close to a preset
value defined in the blockchain system, which is ensured by
a consensus algorithm. For example, the preset block interval
of Bitcoin [17] is 10 min, while Ethereum [18] has a 15 sec
interval. This brings the definition of latency. Denote T as the
time when a user submits a transaction to a blockchain, and
C as the time when the transaction is included in a block,
then C − T is the confirmation delay for this transaction, or
the latency. One can see that by definition, C−T can also be
roughly expressed as n · itv, where n stands for the number of
blocks passed by. Each block has a capacity limit because a
larger block usually brings additional network latency during
consensus, which increases the chance of forks and causes less
performant full nodes to gradually loose its ability to keep
up with the network due to space and speed requirements.
Since block capacity is limited, the latency issue occurs when
the blockchain system is overwhelmed by transactions. Only
a limited number of transactions can be confirmed into a
block. Other transactions may be either queued or deleted
from miners’ transaction pool. A transaction contains a fee
for miners, so miners are preferring transactions with higher
fees. As a consequence, latency-sensitive users have to bid
against each other and pay more fees to the miners to make
sure that their transactions are processed in priority.

2) Smart Contract: Smart contracts, which were first intro-
duced by Ethereum, are programs that run on the Ethereum
Virtual Machine (EVM). They consist of program codes and
variables, and are triggered by transactions that contain call
data. When a transaction is submitted, every miner on the
network executes the code and modifies the variables of the
smart contract. The block capacity of the Ethereum network is
defined by the block gas limit, which is the maximum amount
of resources that can be used by all transactions in a block.
The gas expended by a transaction is the sum of the cost of
each EVM instruction used in the transaction. Transactions
that require more gas to execute consume more CPU and IO
resources, and take longer to validate. Since the time consumed
by a smart contract transaction varies significantly, the latency
issue can also occur when a few transactions in a block require

TABLE I
NOTATIONS

Symbol Description
TX Transaction
U User
S State
d Deposit
f State transition function
x Input of f
S Vector of S, transited by f
S′ Vector of S, the transition result of f
H Hash function
c = (hstate, hinput) Commitment
U, c,d Vectors of corresponding items involved in a

transaction

a tremendous amount of time to validate, making the users
suffer from the latency issues.

III. LATENCY-FIRST SMART CONTRACT

In this section, we introduce our latency-first smart contract
model. First, we brief the core concepts. Then, we detail the
algorithms regarding how to commit, prove, and revoke a
commitment considering both simple and nested cases. The
major notations and their semantic meanings are listed in
Table I

A. Core Concepts

balanceA
(0)

balanceB
(0)

balanceC
(0)

balanceD
(0)

balanceE
(0)

balanceA
(1)

balanceB
(1)

balanceD
(1)

balanceE
(1)

balanceA
(2)

balanceC
(1)

TXB→ A
❶

TXD→E
❸

TX A→C
❷

x1

x3

x2

State
Temporary State

Commitments with no dependencies
can be proved

Commitments with unproved dependencies
cannot be proved

Fig. 3. A wallet example in the latency-first smart contract model. Numbers
inside black circles identify the order of occurrence.

Our proposed latency-first smart contract model involves
two types of entities, namely users and miners. Each user U
has a “state”, i.e., a set of variables, stored on chain. A state
can only be updated after the corresponding commitment is
proved; but a temporary state can be computed and stored
locally (off-chain) by a user after receiving the state transition
input x. Accordingly, a user may maintain a sequence of
temporary states following the sequence of unproven commit-
ments. One can see that our latency-first smart contract model
differs from the traditional one in two aspects: variables in
the latter do not have a designated owner and a user state in
the former does not have to be updated immediately after a
commitment is received. A commitment is the pair containing
the hash of the input x and that of the temporary state resulted
from the transition function on input x; therefore a transaction
has multiple commitments, with one for each user. Each user
involved in a transaction also needs to determine its deposit



value dU , which is used to compensate for any potential
losses and ensure fairness in trading. The commitments and
deposits from all users need to be signed by each user in the
transaction, then sent to the smart contract for future approval.
Note that each unproved transaction in the smart contract is
associated with a timer, ensuring that if the users do not
provide the correct input x within a predetermined time frame,
the commitments are revoked and the deposits are applied. By
such a design one can see that when the blockchain is in a
high demand, our latency-first scheme allows a group of users
to submit commitments as “promises” that the corresponding
proofs will be uploaded later, which can help to rebalance the
workload and reduce average latency. Also note that we allow
the commitments involved in a transaction to be approved
at any time but revoking them before the associated timer
times-out is not permitted, to enhance the effectiveness of our
latency-first scheme and protect serious and benign users.

Fig. 3 demonstrates an example of a latency-first smart
contract, in which the state of a user is denoted by balanceU .
In this example, the initial states of all users, denoted by
superscript (0), are on-chain ones. Temporary states are labeled
by superscripts (1),(2) , · · · . A state transition involves trans-
ferring certain amount of one user to another, which modifies
the balances (states) of both the sender and the receiver.
The transaction TXB→A updates Bob’s and Alice’s states
to temporary states balance

(1)
B and balance

(1)
A , respectively,

and the transaction TXA→C updates Alice’s temporary state
balance

(1)
A and Carol’s on-chain state balance

(0)
C to temporary

states balance
(2)
A and balance

(1)
C , respectively, as the com-

mitments for the transaction TXB→A have not been proved
before the ones for TXA→C are received. Our example also
shows a transaction between Dave and Eve TXD→E , which
is independent of the states of Alice, Bob and Carol.

For each transaction, the two parties independently compute
their commitments based on the input and their temporary
states. Specifically, Alice and Bob compute their commit-
ments for the transaction TXB→A based on x1 as well as
balance

(1)
A and balance

(1)
B . These commitments and the deposit

values agreed by Alice and Bob (dA and dB) are signed
and then uploaded to the miners. After receiving the signed
commitments/deposits, miners lock the users’ on-chain states,
if unlocked, append the commitment and deposit value on
chain for each user to confirm that the commitments are related
to TXB→A. Alice and Bob also store their temporary states
locally before the commitments get proved.

When the blockchain has spare capacity, either Alice or
Bob can submit x1 to miners to prove their commitments for
the transaction TXB→A. If the state transition and hashes are
successfully validated, the miners update Alice and Bob’s on-
chain states; otherwise, the transaction TXB→A gets revoked.
In such a case, TXA→C can still be successful if balance

(0)
A

is sufficient to pay Carol.

B. Latency-First Operations: Commit, Prove, and Revoke

In this subsection, we first leverage a simple case of apply-
ing the basic operations of latency-first to help understand how

our smart contract concretely works. A simple case means that
a group of users submit commitments that are resulted from
a single input, whose on-chain states are not locked. Then we
illustrate how to handle a more sophisticated nested case where
one or more new commitments are dependent of previously
created temporary ones.

1) Simple Case: Simple cases are quite popular in practice.
For example, when a customer pays an amount x for a video
to an online store who keeps amount y to itself and transfers
amount z to the video producer as requested by copyright
agreement, where x = y+ z. In such a case, the three parties
form a group, and the money transfer from the customer to the
store as well as the one from the store to the video producer
must be considered together to guarantee the atomicity of
the transaction. Formally speaking, a simple case involves a
transaction TX, a group of users U affected by TX, and input
x, where the on-chain states of all users are not locked. Each
user Ui computes a temporary state Si with input x, then
creates a commitment ci. Let d = (d1, d2, . . . , d|U|) be the
deposits of the users in U. Note that di can be either positive or
negative, which indicates earning or spending money. Besides,∑|U|

i=1 di = 0 since money cannot come out of thin air
throughout the life of a transaction. Deposits are applied to
“un-do” the transaction in case a revocation occurs. Suppose a
commitment ci gets revoked, the owner of it, i.e., Ui, pays di if
di ≥ 0 or gets −di as compensation if di < 0. In the following
we employ a two-user example to illustrate our latency-first
smart contract model for the sample case.

1. Execute

3.(a) Prove
Prove

4.(b) Revoke Revoke on timeout or proof failure

Commit

Alice Miners Bob

0. Offchain Agree on transition input x and deposits d=(d A , dB)

Fetch states SA
(0) , SB

(0)

2. Commit

Apply transition f to get SA
(1) , SB

(1)

Compute commitments c=(c A , cB)

Sign ⟨TX , c , d ⟩

Upload ⟨TX , c , d ⟩

Upload ⟨TX , x ⟩

Fetch states SA
(0) , SB

(0)

Apply transition f to get SA
(1) , SB

(1)

Compute commitments c=(c A , cB)

Sign ⟨TX , c , d ⟩

U=(A , B)

with Alice’s and Bob’s signatures

Send signature to Alice

Fig. 4. Simple case example.

The complete workflow of the simple example is shown
in Fig. 4, in which Alice trades digital money defined in the
smart contract for Bob’s real money. Before the transaction
TX starts, Alice and Bob agree on the transfer amount x
and deposits d = (dA, dB). We have dA > 0 and dB =
−dA < 0, so that when the transaction is revoked, Bob gets
dA as compensation. Next, both Alice and Bob locally and
independently Execute: fetch the on-chain states S

(0)
A , S

(0)
B ,

obtain the temporary states S
(1)
A , S

(1)
B by computing the state

transition function f with input x, calculate commitments
c = (ca, cb), and finally sign TX, c, and d. After that, either



Alice or Bob sends her/his signature to the other, who then
transfers TX, c, d and both users’ signatures to a miner. The
miners execute Commit to save the two users’ commitments
on chain, setup a timer, and lock their deposits and states after
signature verification. Later, either Alice or Bob sends a miner
TX and the transfer amount x to prove their commitments
when the blockchain is not busy. The miners execute Prove

to compute the new states for Alice and Bob by applying the
state transition function with input x, verify correctness by
checking against the previously submitted commitments, and
finally replace their on-chain states with the newly computed
ones. If their commitments are not proved after a designated
time interval (the timer times out), miners call Revoke to
revoke the transaction.

2) Nested Case: Nested cases emerge when proofs are not
validated in time as they are less prioritized than commitments.
For example, a customer pays x1 for an online video, in which
y1 is for the video store and the rest z1 = y1−x1 needs to be
transferred to the producer. Before the commitments of this
transaction get proved, the customer pays x2 for a meal, in
which y2 is transferred to the restaurant and z2 = y2 − x2 is
for tip. The second group of commitments depend on the first
one as the second state transition depends on the customer’s
temporary state resulted from the first transaction. Formally
speaking, a nested case involves a sequence of transactions
TX1,TX2, . . . , multiple user groups U1,U2, · · · , with one
for each transaction, and multiple inputs x1, x2, · · · , with one
for each transaction, where the number of transactions keeps
growing before all committed ones get proved. A transaction
triggered by xi can rely on the temporary states whose cor-
responding commitments are submitted but not proved. In the
following we illustrate our latency-first smart contract model
for the nested case by an example where each transaction
involves two users.

1. Execute TX1

5.(a) Prove TX1

5.(b) Revoke TX1 Revoke on timeout or proof failure

Alice Miners BobCarol

Prove

6.(a) Prove TX2

6.(b) Prove TX2 Prove (FailureProve)

Prove

[ The same as in simple case ]

Fetch states SA
(0) , SB

(0)

Upload ⟨TX1 , c1 , d 1⟩

Fetch states SA
(0) , SB

(0)

Send signature to Alice

Commit

Fetch temporary state S A
(1)

Fetch state SC
(0)

Fetch state SC
(0)

Send signature to Carol

Commit

2. Commit TX1

3. Execute TX2

4. Commit TX2

U1=(A , B)

U 2=(A , C )

Upload ⟨TX2 , c2 , d 2⟩ with Alice’s and Carol’s signatures

Upload ⟨TX1 , x1 ⟩

Upload ⟨TX2 , x2⟩

Upload ⟨TX2 , x2⟩

with Alice’s and Bob’s signatures

Execute Execute

ExecuteExecute

Fig. 5. A nested case example.

The workflow of the nested case example is demonstrated in
Fig. 5, where Alice trades with Carol TX2 after her previous
transaction with Bob TX1. First, Alice submits TX1, c1, and
d1 with Alice’s and Bob’s signatures to a miner as in the
simple case. Miners execute Commit to save commitments

about TX1 on-chain. Then, Alice trades with Carol. They
also locally Execute, but the procedure is slightly different
from the simple case: Carol fetches Alice’s temporary state
S
(1)
A from Alice. Each of them then independently performs

the rest: fetch Carol’s state S
(0)
C from the chain, obtain the

temporary states S
(2)
A , S(1)

C by computing the state transition
function f with input x2, and sign TX2, c2, and d2. Either
Alice or Carol sends a miner TX2, c2, and d2 with both
users’ signatures. The miners execute Commit to save the
commitments about TX2 on chain. Later, if Alice and Bob
cannot prove TX1 on time, TX1 is revoked. Carol sends TX2

and x2 to prove TX2. Miners carry out FailureProve after
performing commitment verification to handle the situation
where a previous related transaction is revoked. Depending
on whether or not Alice has sufficient balance to pay Carol,
after revoking TX1, TX2 might either be proved or revoked.

C. The Full-fledged Protocol

Four procedures are involved in our latency-first smart
contract: Execute as a user protocol shown in Algorithm 1;
Commit, Prove, Revoke as miner protocols, with two sub-
routines FailureProve and VerifyCommit, shown in Al-
gorithm 2. A transaction TX has one of the following
five statuses: Processing, Committed, Proved, Revoked, and
FailureProved. Initially, a transaction is under Processing.

Algorithm 1: User Protocol

1 upon receiving ⟨Execute,TX,U, x,d⟩ do:
2 foreach Ui ∈ U do
3 Fetch Ui’s latest state as Si

4 if Si is a temporary state and H(Si) is
invalid then

5 return
6 S = {S1, · · · , S|U|}
7 Compute state transition S′ = f(S, x)
8 Compute c = {(H(S′

i), H(x))|S′
i ∈ S′} as

commitments for TX; Broadcast ⟨TX, c,d⟩σ to
U

9 Aggregate received messages and send them to
miners

Algorithm 1 is executed off-chain by each user in U, where
U is a group whose states are affected by TX. To execute a
transaction TX with input x, a user first fetches the latest
states of all users, where the state of each user is either
an on-chain state or the latest temporary one, depending on
whether or not the corresponding user has committed not-yet-
proved transactions. In the latter case, the temporary state Si is
fetched from the corresponding user Ui instead of chain, and
thereby a verification is processed to check whether H(Si)
matches the value in the commitment of Ui’s latest committed
transaction, which can be obtained from the blockchain. After
fetching all states, the user then computes the temporary state
for each user, calculates each user’s commitment, and finally
signs TX, commitments c, and deposits d. A commit message



Algorithm 2: Miner Protocol

1 upon receiving ⟨Commit,TX, c,d,U⟩ do:
2 Lock deposits d
3 Save (U, c,d) on chain with TX as the key
4 Mark TX as Committed

5 upon receiving ⟨Prove,TX, x⟩ do:
6 Retrieve (U, c,d) with TX
7 Fetch U’s on-chain states as S
8 if VerifyCommit(TX,S, x, c) = TRUE then
9 Unlock deposits d

10 Compute state transition S′ = f(S, x)
11 Update users’ on-chain states to S′

12 Mark TX as Proved

13 upon receiving ⟨Revoke,TX⟩ from a timer or
VerifyCommit() do:

14 Retrieve (U, c,d) with TX
15 Apply deposits d
16 Apply penalty and ban U for a time period
17 Mark TX as Revoked

18 Function FailureProve(TX,TX, x,S):
19 Retrieve (U, c,d) with TX
20 Fetch U’s on-chain states as S
21 Compute state transition S′ = f(S, x)
22 if transition failed then
23 Apply deposits d
24 Mark TX as Revoked
25 else
26 Unlock deposits d
27 Update users’ on-chain states to S′

28 Mark TX as FailureProved

29 Function VerifyCommit(TX,S, x, c):
30 Compute state transition S′ = f(S, x)
31 foreach ci ∈ c do
32 Extract (hstate, hinput) from ci
33 if H(x) ̸= hinput then
34 return FALSE
35 if H(S′

i) ̸= hstate then
36 if Ui’s transaction before Si is Revoked or

FailureProved then
37 Call FailureProve(TX, x,S)
38 else
39 Call Revoke(TX)
40 return FALSE
41 return TRUE

that includes TX, c, and d as well as all users’ signatures is
submitted to the smart contract by any user (Step 9 does not
need to be carried out by all users).

Algorithm 2 demonstrates the miner protocol. After receiv-
ing a Commit message that contains TX, c, and d, miners
lock the deposit for each user, then save the user addresses,
commitments, and deposit values on chain. The transaction
TX is then marked as Committed.

TX1 :Proved TX2 :Committed

TX1 :Revoked

Prove

TX1 :FailureProved

TX1 :Committed

TX2 :Committed

TX2 :Committed

TX2 :Committed

FailureProve

Wait for TX1

FailureProve

(a)

(b)

(c)

(d)

Fig. 6. Transaction predecessor status and the corresponding prove method.

To prove a transaction TX, the predecessors of TX must
be proved or revoked, which ensures the execution order of
the transactions. Miners use different methods to prove the
transaction. Fig. 6 illustrates four cases in proving TX2 where
the statuses of the predecessors differ. Case (a) shows the sit-
uation where all predecessors of TX2 are successfully Proved,
and therefore miners Prove TX2 by VerifyCommit. Case (b)
and (c) indicate that when at least one of the predecessors of
TX2 is either Revoked or FailureProved, miners prove TX2

by calling FailureProve to handle the failure brought by the
predecessor. Case (d) demonstrates an example where TX2 can
not be proved as at least one of its predecessors, see TX1, has
a state of Committed. In such a case, TX1 must be proved or
revoked before TX2 can be proved.

Procedure Prove is executed by the miners after receiv-
ing TX and the transition input x. Miners first fetch the
saved commitments and the users’ on-chain states, then call
VerifyCommit to verify whether TX is ready to be proved. If
YES, all users involved in TX have their deposits unlocked and
the on-chain states updated, and TX is then marked Proved.

Procedure VerifyCommit pays a very critical rule. It takes
inputs TX,S, x, c, where S is the set of on-chain states
of all users associated with TX. First, the temporary states
transitioned from S based on x are computed. Then each
commitment of TX, which is stored on-chain, is verified
against the hash of x and that the newly obtained temporary
state. If there is a mismatch in hinput, it means someone who
does not know the true value x intends to prove, and the
verification terminates while authentic users are still allowed
to prove later by submitting the correct x. If the mismatch
happens in hstate, there are two possible reasons: either at least
one predecessor transaction of TX is not successfully Proved,
or users collude to commit tampered states which are different
from the output of f(S, x). In the former case, miners call
FailureProve to handle the failures which will be discussed
next. In the latter case, miners call Revoke to immediately
revoke the commitments without waiting for timeouts as it



would be impossible to prove.
In the situation where the transaction has at least one prede-

cessor transaction Revoked or FailureProved, hash mismatches
are detected in VerifyCommit. Miners call FailureProve to
handle such a failure. Specifically, miners transit the fetched
users’ on-chain states S with input x to get new states S′.
If the transition succeeds, the miners update users’ on-chain
states as S′ and the transaction TX is marked as FailureProved.
Otherwise, miners have to revoke the commitments and apply
deposits. Then TX is marked as Revoked in this case.

The Revoke procedure is called when required by
VerifyCommit, or after a timeout event occurs. To revoke
a transaction, the miners transfer the deposits to each user
as a compensation to “un-do” the state transition, and apply
additional penalty to users if required. Moreover, this group
of users is considered malicious and therefore is banned to
submit latency-first commitments and regular transactions for
a relatively long period, so that other users have sufficient time
to handle failures by FailureProve. Such a consideration can
also prevent the malicious users from pushing more malicious
commitments that depend on the failure branch for chaos.

Note that since it takes a much longer time to execute Prove
and FailureProve than Commit, to make sure Commit can
be confirmed on chain within about a block interval, a QoS
(Quality of Service) mechanism can be implemented in the
chain to prioritize Commit by reserving a certain amount of
block capacity for it, with Prove and FailureProve being
processed at a lower priority. It may also be possible to further
optimize this feature at the network level [19].

D. Security Analysis

In our scheme, an adversary A is able to manipulate locally-
stored temporary states, reject to provide the correct proof,
and refuse to make a revocation. The goal of A is to get
profit by tempering or canceling state transitions. We focus
on the most important attack, dependency attack, where A
first submits commitments about TX1 with user B colluding
with A, then makes another latency-first transaction TX2 with
user U . A tries to get profit by tempering or canceling TX2

by not providing the correct proof about TX1.

Theorem III.1. Under the assumption that the hash function
satisfies the second preimage security, the probability of A
successfully performing the dependency attack is negligible.

Proof. A first submits commitments c1 = (cA,1, cB) for trans-
action TX1 with user B, S′

1 = f(S1, x1), U1 = (A, B), S1 =

(S
(0)
A , S

(0)
B ), and S′

1 = (S
(1)
A , S

(1)
B ). Then, A makes another

transaction TX2 with a user U by committing c2 = (cA,2, cU )
and deposits d2 = (dA,2, dU ) to miners. U2 = (A, U),
S2 = (S

(1)
A , S

(0)
U ), and S′

2 = f(S2, x2) = (S
(2)
A , S

(1)
U ).

A tries to perform the dependency attack by three types of
attempts:

1) providing A’s tampered temporary state S
(1),fake
A when

user U fetches A’s temporary state in a hope that the
commitments about TX2 are mistakenly computed by U ;

2) tampering temporary states to get S(1),fake
A , S

(1),fake
B when

A and B are computing S′
1 = f(S1, x1). A and B

compute and upload the commitments cA,1, cB that cor-
respond to the fake temporary states;

3) not providing the proof about TX1.
For Attempt 1, user U fetches A’s tampered temporary state

S
(1),fake
A when locally executing TX2. U can check whether

H(S
(1),fake
A ) = H(S

(1)
A ), where H(S

(1)
A ) is obtained on chain.

Since the hash function H satisfies the second preimage
security, the chance of A finding a fake state with the same
hash is negligible. Therefore, U refuses to process TX2 and
no commitment is uploaded. Our scheme is resistant against
the dependency attack in Attempt 1.

For Attempt 2 and Attempt 3, commitments about TX2

are submitted. No one provides the correct proof about TX1,
and therefore miners revoke TX1 after timeout. Then later,
TX2 can be either failure-proved or revoked, i.e., if the state
transition does not fail, TX2 is proved under the circumstance
where TX1 is revoked; otherwise, deposit d2 is applied to
revoke TX2. In either situation, A does not gain profit.
Therefore, our scheme is resistant against the dependency
attack in Attempt 2 and Attempt 3.

IV. IMPLEMENTATION

A. The Programming Tool

We propose a programming tool that facilitates developers
in creating latency-first smart contracts following our model.
This tool performs lexical and grammatical analysis on the
input Solidity file, adds supplementary code to the generated
abstract syntax tree, and finally produces a new Solidity file
that can be directly deployed on Ethereum or other EVM-
compatible blockchain networks. A developer utilizes this tool
to define the state S as well as the state transition function f
and its input x, counting on our tool to finish the rest:

• the contract storage of the online states and commitments;
• the online transactions to directly update the on-chain

states if users are not sensitive about latency;
• the commitments and proof transactions allowing users

to submit a latency-first commitment and prove later.
In our demonstration, a developer writes about 50 lines of
code to support experiments in Sec. IV-B and gets 180 lines
of deployable codes.

B. Performance Evaluation

We conduct a series of experiments to evaluate the per-
formance of our latency-first model. We implement a smart
contract using our tool in Sec. IV-A, with KECCAK-2562 as
the hash algorithm H . In real-world applications, executing
smart contract transactions can be time-consuming due to
tasks such as performing elliptic curve operations, calculating
multiple hashes, and validating zero-knowledge proofs. To
simulate the CPU time required to perform tasks like those

2KECCAK-256 implemented in Ethereum has different padding scheme
with the final SHA-3 standard.
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(c) The time cost of Prove transaction.
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(d) The time cost of regular transaction.

Fig. 7. The time cost of latency-first operations and regular transactions.
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Fig. 8. The kernel density estimation of transaction latency. The probability
of having a low latency time is significantly higher in our latency-first scheme.

mentioned above, we define the workload factor in our smart
contract, achieved by repeatedly invoking the KECCAK-256
algorithm for a specified number of times. We also define the
IO factor to control the number of updated variables during a
state transition to simulate the IO impact. Besides, the block
gas limit of a blockchain has a direct impact on the number
of transactions by limiting the total workload in a block, and
therefore has impact on the latency time. In our experiment,
we vary these three variables to analyze the time cost and
latency distribution under different conditions.

We design the time cost experiments to measure the CPU
time cost of Commit and Prove with different workload
factors and IO factors, showing our latency-first model does
not have much overhead. Then, we design the latency dis-
tribution experiments where a number of users are simulated
simultaneously and measure the latency – the time interval
between a user submitting a transaction and the transaction
gets confirmed into the block after consensus.

Our experiments are run on a server with two Intel Xeon
Silver 4214R CPU @ 2.40 GHz (24 cores in total) and 64 GB
RAM, running Arch Linux on GNU/Linux 5.18.0-arch1-1. We
run a private Ethereum network with Proof-of-Authority (PoA)
consensus and the time interval between two blocks is set to
1 sec. The version of the Ethereum client is v1.10.20 and we
make a modification in order to more precisely measure the
CPU time cost of a transaction3.

1) Time Cost: The purpose of this set of experiments is to
determine how much overhead is brought by our latency-first

3In some papers, the time cost of a transaction is misled with its latency, by
measuring the time interval between a transaction is submitted through JSON-
RPC and the callback is received. This is not accurate since the measurement
result is also related to the number of committed transactions and the block
interval. Each test case is repeated thirty times.

model, and how the state transition influences the overhead.
The workload factor varies from 10 to 1, 000, and the IO factor
varies from 1 to 50. The gas limit is set to 33, 554, 431 as we
focus on measuring the CPU time cost on a single transaction.
Fig. 7 shows the experiment results. Fig. 7(a) compares the
time costs between the regular transactions and the Prove

procedure in our model, and it indicates that the overhead of
our model is sufficiently low. Fig. 7(b) indicates that the time
cost of a commit transaction is around 1.5 ms, regardless of
how the workload factor varies. Compared with the time cost
of the regular transactions shown in Fig. 7(d), one can see that
it is efficient enough to submit a commitment in our latency-
first model, especially when a state transition takes a great
amount of time. It can also be inferred that the number of
commitments that can be confirmed in a block is much larger,
as the time cost of Commit in Fig. 7(b) is significantly smaller
than that of Prove in Fig. 7(c), and therefore latency should
be reduced.

2) Latency Distribution: We focus on how exactly our
model can reduce latency compared to the regular model.
1, 000 users are simulated and all of them simultaneously
submit commitments, with one by each user. The latency time
for each commitment is recorded from the time of submission
until it is confirmed on-chain. After all of the commitments
are confirmed, the users in the same group simultaneously
submit regular transactions, with one by each user, and the
latency time for each of these transactions is also recorded. We
compare the latency times of the two types of transactions. The
gas limit is set to 16, 777, 215 (low) and 33, 554, 431 (high)4.
In this set of experiments, the IO factor is set to 10, while the
workload factor varies from {200, 500}. Fig. 8 demonstrates
the kernel density estimation of transaction latency in all cases.
If the y-axis value at a particular point of the x-axis is high, it
means that the probability density of latency time at that value
is high, which indicates that the latency time is more likely to
take on that value. Fig. 8 indicates that applying our latency-
first model is effective at reducing latency as the density of the
users that only wait for 1 or 2 blocks are much greater than that
in the regular smart contract cases. Fig. 9 shows the detailed
experiment results. In Fig. 9(a) and Fig. 9(b), the blockchain
is heavily overwhelmed with transactions having a larger

4The higher value is close to the gas limit in the Ethereum public chain
since Aug. 2021, and the lower one is close to the public gas limit before
Aug. 2021.
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Fig. 9. The latency time distributions for different cases. The latency-first model is able to greatly reduce latency, especially under a high load.

workload factor. For regular transactions, about 50% (low gas
limit) or 25% of the users (high gas limit) wait for more than
10 blocks to confirm their transactions, which means that these
users suffer from a 10 or 20 times of latency than usual, as
when the blockchain has spare capacity, they only need to wait
for 1 block. Only 5% (low gas limit) or 40% (high gas limit)
regular transactions are confirmed in 1 block. As a contrast,
more than 90% latency-first commitments are confirmed in 1
block. Thus, our scheme is able to greatly reduce the latency
time and improve user experience compared with the regular
smart contract model under a heavily overwhelmed workload.
Fig. 9(c) and Fig. 9(d) show a situation where the blockchain
is slightly overwhelmed with transactions and the workload
factor is smaller. About 70% (low gas limit) or 75% (high
gas limit) users wait for only 1 block until their regular
transactions are confirmed, while more than 90% latency-first
commitments are confirmed in 1 block. Our scheme is also
able to reduce the latency time when the blockchain is slightly
overwhelmed.

In summary, after applying our latency-first smart contract
model, most users are able to get their transactions confirmed
in 1 or 2 blocks, as Commit takes little overhead compared to
the regular transactions. The users prove the commitments at
a later time, but in this situation, the latency does not matter
much, since they are able to submit nested commitments
before proving the transactions the new commitments depend
on. The experiment results indicate that our model is able to
greatly reduce the latency time especially when the workload
is high; and therefor is particularly suitable for blockchains
with imbalanced spare capabilities over time.

V. CONCLUSION AND FUTURE RESEARCH

We propose a latency-first smart contract model in this pa-
per, allowing users to submit commitments during the heavy-

load time and then prove them later during the spare time.
The experiment results indicate that our proposed latency-first
smart contract model is able to significantly reduce the latency
when the blockchain is under a heavy load. Therefore, our
model is able to improve the user experience and balance the
blockchain computational resources, making it robust against
high-frequent requests within a short time. We have provided
public access to our code and data at https://github.com/
SDU-IIC-Blockchain/latency-first-smart-contract-repos. More
works can be done to improve our latency-first smart contract
model, such as allowing a user to check all related state
transitions and get the ability to prove all dependent trans-
actions, extending our latency-first smart contract to support
privacy-preserving scenarios, and implementing a global state
management model to support variables that do not have a
user ownership.
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