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Abstract—Permissionless blockchains face considerable chal-
lenges due to increasing storage demands, driven by the pro-
liferation of Decentralized Applications (DApps). This paper
introduces EC-Chain, a cost-effective storage solution for per-
missionless blockchains. EC-Chain reduces storage overheads of
ledger and state data, which comprise blockchain data. For ledger
data, EC-Chain refines existing erasure coding-based storage
optimization techniques by incorporating batch encoding and
height-based encoding. We also introduce an easy-to-implement
dual-trie state management system that enhances state storage
and retrieval through state expiry, mining, and creation proce-
dures. To ensure data availability in permissionless environments,
EC-Chain introduces a network maintenance scheme tailored
for dynamism. Collectively, these contributions allow EC-Chain
to provide an effective solution to the storage challenges faced
by permissionless blockchains. Our evaluation demonstrates that
EC-Chain can achieve a storage reduction of over 90% compared
to native Ethereum Geth.

Index Terms—Blockchain, storage, state trie, erasure coding.

I. INTRODUCTION

Blockchain technology, esteemed for its capacity to up-
hold a secure and immutable distributed ledger among a
network of untrusted nodes, is increasingly confronted with
the issue of storage overhead. This problem is particularly
pronounced with the rising prevalence of Decentralized Appli-
cations (DApps), such as blockchain games [1], Decentralized
Exchanges (DEXs) [2], and Decentralized Finance (DeFi) [3].
These applications produce substantial data volumes daily,
intensifying storage demands. For example, the Ethereum
network experiences an approximate daily data increase of
0.2 GB1 per node. This swift expansion in storage require-
ments poses a significant challenge for computers serving as
blockchain storage nodes. As storage needs grow, the number
of users maintaining nodes decreases, threatening the security
and decentralization that are fundamental to permissionless
blockchains [4].

Blockchain storage overhead arises primarily from two
sources: ledger data and state data. Ledger data pertains to
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the immutable chain of blocks, each containing a set of
transactions. State data, representing the current system state
derived from past transactions, is generally organized in a
tree structure to support fast verification. Notably, blockchain
nodes seldom need to access the complete historical ledger.
Instead, they frequently access the state data during transac-
tion processing [5]. As a typical example, the state data of
Ethereum encompasses more than just account balances. It
also includes smart contract code and storage, thereby enabling
a broader range of functionalities. This added functionality,
however, leads to increased storage requirements. To mitigate
the problem of state data explosion, Ethereum implemented
state pruning with the transition from version 1.11.5 to version
1.13.82. Despite this improvement, state data still constitutes a
significant portion (33.29%) of total storage and continues to
expand rapidly. Current research efforts aim to enhance storage
solutions [6], [7], [8], [9], [10], yet we still face challenges in
effectively reducing blockchain storage redundancy.

To address the challenges associated with state data, state-
less blockchains have been developed, providing succinct and
verifiable state proofs and mitigating the need for complex
state management [8], [11], [12], [13], [14]. However, this
requires off-chain state storage and frequent witness updates,
which can compromise on-chain data availability and impose
significant burdens on users. Moreover, stateless approaches
require significant modifications to the existing state storage
architecture, which is not implementation-friendly. Therefore,
altering the current state-trie architecture is another promising
solution, but mature implementations are still limited. This is
because state data is characterized by frequent access and high
availability demands, making it challenging to directly apply
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existing storage optimization techniques such as pruning [15],
[6], compression [7], [16], [6], and erasure coding [10], [9],
[17]. Moreover, the dynamic nature of permissionless net-
works, characterized by frequent node arrivals and departures,
further exacerbates data availability issues. The large scale of
permissionless networks also adds extra complexity to storage
optimizations.

EC-Chain specifically addresses these critical challenges in
permissionless blockchains. By integrating optimized encod-
ing schemes, and an innovative dual-trie state management
system, EC-Chain reduces storage overhead for both ledger
and state data. We also propose network maintenance to
adapt to the dynamism of permissionless networks. Our key
contributions include the following:

1) EC-Chain decreases storage costs for permissionless
blockchains by applying erasure coding (EC) to both
ledger and state data. In the context of ledger data, the
system incorporates batch encoding and height-based
encoding methods to improve upon current EC-based
blockchain storage optimization techniques.

2) To effectively handle the expanding volume of state
data, EC-Chain implements an innovative dual-trie state
management system. This system divides the original
state trie into two distinct hot and cold tries to facilitate
low redundancy in storage and optimize state retrieval
processes. Additionally, we introduce novel techniques
including state expiry, mining, and creation, which col-
lectively contribute to the efficient management of state
data.

3) EC-Chain utilizes a trie-splitting method to enhance
the extraction of information from encoded segments.
This technique enables the efficient retrieval of specific
data without the need to recover the entire cold trie.
Importantly, the integrity of the data is preserved and
remains verifiable after encoding.

4) The EC-Chain system incorporates a network mainte-
nance scheme designed to address the dynamic nature
of permissionless networks. This offers adaptable mech-
anisms for group upgrades and downgrades, as well as
chunk updates, to improve data availability regarding
frequent node arrivals and departures.

II. RELATED WORK

There are four types of approaches to save blockchain
storage: pruning, compression, stateless, and erasure coding.

A. Pruning and Compression

Pruning is a straightforward approach to reduce storage by
removing unnecessary data. Both ledger and state data can
be pruned. The earliest pruning strategy for blockchain is
Simplified Payment Verification (SPV) [15], which requires
clients to store only block headers for the fast verification of
new blocks. However, its reliance on full nodes and limited
accessibility to transaction data can lead to vulnerabilities [20].
For state data, recent research [6] demonstrates the feasibility
of pruning UTXOs in Bitcoin based on the likelihood of

them being spent again. Several compression techniques exist
to tackle blockchain storage inefficiency. SCC [16] reduces
ledger size by merging blocks and is adopted by resource-
limited IoT devices. Pontiveros et al. [7] target on comprising
smart contract code. Sforzin et al. [6] propose the MINIMIZE
method for Bitcoin, focusing on storing only essential data
for unspent transactions, saving storage without sacrificing
functionality.

B. Stateless Blockchain and Erasure Coding

Stateless blockchains aim to maintain a succinct and ver-
ifiable proof of states for verification without complicated
state maintenance, leveraging techniques Vector Commitment
(VC) [8], [11], [18], [19] and Merkle trees [12], [13], [21],
[14]. Boneh et al. [8] proposed a distributed accumulator with
batching for short UTXO commitments, while Hyperproofs
[11] is the first maintainable and aggregatable VC scheme.
MiniChain [18] introduces the STXO model to reduce storage
costs and proving time, and SlimChain [19] saves on-chain
storage by keeping transaction hashes and a Merkle state
trie root in blocks. Utreexo [12] is a hash-based dynamic
accumulator that arranges a UTXO set into a binary Merkle
forest, with bridge nodes storing the entire Merkle forest and
providing proofs to compact state nodes, which only store
the tree roots to save storage. Bailey and Sankagiri [13] co-
locate recent UTXOs in the tree, reducing proof size compared
to Utreexo. EDRAX [21] accelerates stateless blockchains
by implementing sparse Merkle trees in the UTXO model
and a distributed vector commitment in the account model.
The Verkle tree [22], combining VC and Merkle trees, is
included in Ethereum’s roadmap to enhance scalability and
sustainability.

Erasure coding, traditionally used for fault-tolerant stor-
age, has gained traction in blockchains as a storage-saving
technique. Qi et al. [10] reduce per-block storage overhead
from O(N) (proportional to the number of nodes) to a
constant O(1), while Du et al. [9] introduce PartitionChain to
minimize the computational cost of encoding and decoding.
Additionally, Li et al. [17] address efficient block recovery
for resource-constrained nodes, showcasing erasure coding’s
potential for scalable and efficient blockchain storage.

C. Limitations of Current Approaches

As illustrated by TABLE I, the current approaches have
contributed to storage reduction, but still face sevel limita-
tions: 1) Pruning and Compression: Pruning involves data
removal, compromising data availability. Compression tech-
niques though can be lossless, yield only marginal perfor-
mance enhancements. For example, SLACK [6] surpasses
standard compression methods (gzip, zstd, lzma) in Bitcoin
storage, but the maximum achievable savings are limited to
28.62%. 2) Stateless blockchain: While this method allows
validators to store only a constant-size state, it comes with
a trade-off. Stateless blockchains don’t eliminate the need
for state data entirely. Instead, they shift the burden from
validators to users. This method requires users to store state
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TABLE I
A COMPARISON OF BLOCKCHAIN STORAGE REDUCTION TECHNIQUES

Method Permissionless
(Dynamism) Smart Contract Storage Optimization of On-Chain Data

AvailabilityLedger State†

SPV [15] Pruning ✓ ✗ ✓ ✓ G#
MINIMIZE [6] ✓ ✗ ✓ ✓ G#

Pontiveros et al. [7]
Compression

✓ ✓ ✗ ✓  
SCC [16] ✗ ✗ ✓ ✗  
SLACK [6] ✓ ✗ ✓ ✗  

Boneh et al. [8]

Stateless

✓ ✗ ✗ ✓ #
MiniChain [18] ✓ ✗ ✗ ✓ #
SlimChain [19] ✓ ✓ ✗ ✓ #
Verkle Tree [14] ✓ ✓ ✗ ✓ #

BFT-Store [10]
EC

✗ ✗ ✓ ✗  
PartitionChain [9] ✗ ✗ ✓ ✗  
Li et al. [17] ✗ ✗ ✓ ✗  

EC-Chain State Expiry + EC ✓ ✓ ✓ ✓  
† UTXO or state trie

data off-chain and frequently update their witnesses, which
can negatively impact the availability of on-chain data and
cause frequent user interactions3. More importantly, designing
a stateless system can result in significant changes to the
current state management system, making implementation
challenging. 3) Erasure Coding: This technique reduces data
redundancy. However, existing implementations are limited
to handling ledger data and do not apply to state data, thus
not supporting smart contract-enabled blockchains. Moreover,
current approaches lack the capability of adapting to the
typical dynamic conditions of permissionless blockchains.

III. PRELIMINARY AND NETWORK SETTING

A. Preliminary

Here, we present key concepts used in EC-Chain, including
blockchain storage, erasure coding, and distributed hash table.

1) Blockchain Storage: A blockchain system mainly con-
tains two types of data: ledger data and state data. In essence,
the ledger data provides a complete and tamper-proof record
of all blocks, while the state data offers a more efficient way
to access and manage the system state based on ledger history.
Ledger data are typically implemented using a chain of blocks,
where each block contains a set of transactions and a reference
(hash) to the previous block. Unlike the ledger, the state data is
typically implemented with a state trie and maintains the state
of every account. We can think of it as an index for the ledger,
allowing for fast lookups of the current system state. The
state trie is a fundamental data structure underpinning many
practical blockchains, with Ethereum being a prime example.
Ethereum employs a Merkle Patricia Trie, a special kind of
tree structure that leverages hashes for efficient data storage
and verification.

3The number of users affected scales linearly with the total number of
transactions on the network.

2) Erasure Coding (EC): In EC-Chain, we leverage the
Reed-Solomon (RS) coding scheme, first described by Reed
and Solomon in 1960 [23]. This scheme works by manip-
ulating data in units called chunks, often several megabytes
(MB) in size. An (k,m)-RS erasure coding scheme allows
us to recover original data as long as we have any k chunks
from a set of k+m chunks. Specifically, a (k,m)-RS scheme
encodes k equal-sized data chunks (denoted as d1, · · · , dk) to
generate m redundant parity chunks (denoted as p1, · · · , pm).
These k original data chunks and the m parity chunks together
form a strip. For convenience, we designate the encoding
and decoding functions as RS.Encode() and RS.Decode(),
respectively.

3) Distributed Hash Table (DHT): A DHT acts as a
useful tool for efficiently distributing and retrieving data
across a distributed network. Within a DHT, the function
GetClosestPeers(h) identifies the precise node IP addresses
that store a data item associated with a specific hash h, and
Get(h) retrieves the data fingerprinted by h. The Kademlia
protocol [24], introduced in 2002, is a well-regarded DHT
protocol recognized for its efficient routing algorithm and
resilience in extensive networks. Therefore, this study utilizes
the production implementation of Kademlia provided by Pro-
tocol Labs.

B. Network Setting

In EC-Chain, we consider a network consisting of
blockchain storage nodes, referred to simply as nodes within
this paper. The network size, represented by N , is unkown
in permissionless blockchains. The nodes self-organize into
groups denoted by G = {g1, g2, · · · , gK}. Each group gi has a
size |gi|, and the total network size is given by N =

∑K
i=1 |gi|.

Each group g is sized 2t for t ≥ 2. Therefore we also use
g(2

t) to denote a group of size 2t, with the smallest group
comprising four nodes. We set k = m = |g|/2. Specifically,
for a group of size 2t, a (2t−1, 2t−1)-RS scheme is employed,
enabling data recovery as long as half of the chunks are
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available. In the subsequent section, we will demonstrate that
this configuration is conducive to storage optimization and
dynamic network maintenance.

IV. EC-CHAIN DESIGN

EC-Chain reduces storage overheads in permissionless
blockchains through a multifaceted approach. Using erasure
coding, EC-Chain encodes and distributes ledger and state
data between collaborating node groups, significantly reducing
individual node storage requirements. Data verifiability is
ensured by employing a Distributed Hash Table (DHT), as
detailed in Section IV-A. For ledger data, optimized encoding
strategies like batch encoding and height-based encoding are
utilized (Section IV-B). State data benefits from a dual-trie
state management system, described in Section IV-C. The
fully replicated hot trie facilitates rapid retrieval of frequently
accessed data. Less frequently accessed data resides in the
cold trie, where erasure coding minimizes storage space. This
dynamic system adjusts data placement within the tries based
on access patterns, optimizing storage utilization. Additionally,
a network maintenance scheme manages node arrivals and
departures and incentivizes nodes to merge into larger groups,
as Section IV-D illustrates. Overall, this EC-Chain design
ensures low storage overheads and high data availability in
dynamic permissionless networks.

A. Distributed Hash Table for Data Verifiability

Erasure coding aids in decreasing storage costs in
blockchain databases by allowing nodes to encode and dis-
tribute data fragments in a fault-tolerant manner. To ensure
the public verifiability of distributed data in untrusted envi-
ronments, metadata concerning the data and parity chunks can
be managed using either a distributed hash table (DHT) or
a threshold signature (TS). Our subsequent analysis demon-
strates that, in permissionless blockchain environments (such
as EC-Chain), DHTs offer more benefits over TS schemes for
two main reasons:

First, establishing a DHT is simpler than setting up a TS.
The initialization process involves assigning unique identifiers
to nodes, establishing connections to bootstrap nodes, and
updating routing tables to optimize data distribution. This
approach scales effectively. Establishing a TS group requires
a more intricate and time-consuming process compared to
DHTs. It involves generating and securely distributing private
key shares among known participations. Furthermore, TS
schemes exhibit scalability limitations, struggling to efficiently
handle large-scale node networks. It takes about 150s to estab-
lish 64 nodes for pairing-based threshold cryptosystems [25].
TS schemes are inherently more suitable for permissioned
blockchains characterized by a known and small set of nodes.

Secondly, permissionless blockchains exhibit dynamic char-
acteristics, with nodes frequently arriving and departing the
network. DHTs excel in such scenarios due to their simple
update mechanisms. New nodes seamlessly join by connect-
ing to existing members, updating their routing tables, and
redistributing key-value pairs based on their unique identifiers.

This ensures scalable performance when distributing data and
routing throughout the network. Departing nodes can either
notify their neighbors or be identified through health checks
to maintain data availability. In contrast, node arrivals or
departures within a TS scheme require a complex proactive
secret sharing scheme [26], [27]. This entails recalculating
threshold parameters, securely distributing new key shares, and
updating the public key. This process also requires consensus
among remaining nodes to uphold security.

DHT and TS schemes both require storing proofs of chunks
for verification. A notable concern regarding DHT might be
the storage overhead. Nevertheless, our estimation suggests
that the storage requirement for DHT, even when applied to
a large-scale system like Ethereum (approximately 20 million
blocks), is estimated to be around 3 GB. This represents only
0.3% of Ethereum’s total storage capacity, indicating that the
overhead is relatively minimal.

B. Ledger Encoding

This paper proposes two advanced encoding strategies:
batch encoding and height-based encoding, to optimize pro-
cessing efficiency and data availability, respectively.

Batch encoding: 𝟒,𝟒 -RS

4 parity chunks

Blockchain tip

EC storage Full-replicated storage

...

Height-based encoding

4 data chunks

Fig. 2. Ledger encoding: an example of applying batch encoding and height-
based encoding using (4, 4)-RS.

1) Batch Encoding: We can adopt a baseline approach that
encodes one block at a time. Specifically, consider k = m =
|g|/2 and let nodes encode one block. After encoding, a node
pi has a strip of (k + m) chunks denoted c1, · · · , c|g|, then
pi only keeps the chunk ci and abandons the other chunks
in the same strip. This is a basic instantiation of existing
ledger encoding methods [10], [9], [17]. While the baseline
approach processes blocks correctly, this one-block-at-a-time
approach becomes a bottleneck when handling a backlog
of blocks requiring encoding. To address this limitation, we
propose batch encoding as a more effective solution. At the
onset of a new encoding process, a leader is selected through
the verifiable random function (VRF) [28]. This leader is
responsible for specifying the height of all blocks requiring
encoding. The group encodes k consecutive blocks as a single
batch and encodes from the genesis block up to the specified
height. For instance, with a group g(4)(k = 2,m = 2), if the
leader designates blocks (1-4) for encoding, the group encodes
two separate batches: blocks (1-2) and blocks (3-4). We select
consecutive blocks for encoding to facilitate convenient block
verification since encoding non-consecutive blocks would re-
sult in additional overhead, as missing intermediate blocks
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would lead to extra batch recovery efforts. Another benefit
of batch encoding is that it enables parallel encoding across
these multiple batches, thereby enhancing the encoding speed.

2) Height-based Encoding: Encoding all blocks without
careful consideration can unintentionally undermine data avail-
ability. This issue arises because blocks situated near the
blockchain tip are prone to be accessed, leading to increased
read latency when recovering these blocks frequently. To
address this problem, we propose the height-based encoding
strategy for the ledger encoding. The basis for this strategy is
the observation that typical blockchain access patterns—such
as block synchronization [29], transaction validation [21], and
blockchain exploration [30]—primarily concentrate on blocks
near the current blockchain tip. Therefore, our strategy em-
ploys erasure coding for historical blocks that are considerably
older than the current blockchain tip. For example, erasure
coding can be applied exclusively to blocks that are more
than a predefined 10,000 blocks behind the tip. This ensures
that only a small fraction of the ledger (e.g., approximately
0.1%) requires full replication, thereby facilitating the efficient
processing of the majority of block requests without incurring
large retrieval costs.

C. State Encoding

In addition to ledger data, state data contains crucial infor-
mation including account information, contract code, and con-
sensus data for secure and decentralized transaction process-
ing. However, the size of state data grows qucikly, reaching up
to 400 GB in the case of Ethereum. To address this issue, we
propose a dual-trie state management system, which modifies
the existing state trie structure to reduce storage overheads and
preserve high data availability.

4 data chunksSplitTrie Encoding 4 parity chunks

Hot trieCold trie

State expiry State mining State creation

Fig. 3. The dual-trie state management system and cold trie encoding.

1) Dual-Trie State Management: We propose an innovative
dual-trie state management system that reconciles the trade-
offs between storage overheads and data availability inherent
in applying erasure coding. This system divides a state trie
into two tries: a hot trie and a cold trie. The hot trie is
designed for maintaining frequently accessed states and is
fully replicated to prioritize retrieval speed. In contrast, the
cold trie employs erasure coding to fragment and distribute
less frequently accessed states, thereby optimizing storage
utilization. Effective management of these two tries is crucial
for maintaining system safety. Hence we design three elaborate
procedures: 1) State expiry, which governs the transition of

Algorithm 1: The Dual-Trie State Management
Input: Hot trie Thot, cold trie Tcold, new block bh at

height h, recency threshold ∆T , frequency
threshold F , and three maps accessTime,
creationHeight and timer

Output: Updated Thot and Tcold
1 for each address addr to be accessed in bh do
2 if addr /∈ Thot then
3 if addr ∈ Tcold then
4 // State Mining
5 Move addr from Tcold to Thot
6 else
7 // State Creation
8 Add addr to Thot
9 creationHeight[addr]← h

10 Access addr and accessTime[addr]++
11 expiryHeight←

max(h+∆T, creationHeight[addr] +
⌈accessTime[addr]/F ⌉)

12 timer[addr]← expiryHeight

13 for each addr that timer[addr] = h do
14 // State Expiry
15 Move addr from Thot to Tcold

inactive states from the hot trie to the cold trie. 2) State mining,
which manages the transfer of states from the cold trie to the
hot trie when states become active. 3) State creation, which
deals with the establishment of new accounts.

State Expiry. EC-Chain carefully differentiates between hot
and cold states because encoding all states is inefficient and
impractical. In the blockchain, blocks are sequentially ordered,
typically using a timestamp server approach [15]. This con-
ventional method facilitates a basic categorization of hot and
cold states according to the block heights at which the states
are generated. However, this method lacks precision, as it
relies solely on timestamps and overlooks pertinent blockchain
data. For example, an older block might include a frequently
accessed state containing a smart contract for a popular NFT
application.

To address this, we consider two key factors: frequency and
recency, for identifying cold/hot accounts. Frequency pertains
to the rate at which a state is accessed over a defined period
measured by the block height. This method is based on the
observation that states with infrequent access are unlikely to
be accessed again. However, newly generated states with low
access frequency are still likely to experience access in the
future. Therefore, recency, which is the distance in height from
the last accessed block to the blockchain tip, also becomes a
critical factor. By combining these two factors, the system
can accurately distinguish cold and hot states. This approach
ensures that the majority of state accesses are handled by
querying the hot trie, thereby minimizing the need to access
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the cold trie. A trade-off exists between storage costs and
efficiency when determining the thresholds of frequency and
recency: F and ∆T . Increasing F and decreasing ∆T results
in more accounts being transferred to the cold trie for erasure
coding, which reduces storage costs but increases transaction
execution latency due to more frequent cold trie access. The
method of organizing state trie is a deterministic algorithm so
honest nodes can maintain a consistent view of dual-trie states.

State Mining and State Creation. States within the cold trie
are less frequently accessed directly, though the possibility of
such access cannot be ignored. If a state from the cold trie
is accessed, the state is moved to the hot trie as its recency
falls below ∆T , and then the proof of state is generated from
the hot trie. This procedure, referred to as state mining, lets
nodes transit the active states from the cold trie to the hot
trie. The creation of a new state needs a blockchain consensus
process, which requires Merkle proofs from both tries to verify
that the state did not previously exist. This verification step is
important to prevent account collisions. Once validated, the
new state is inserted into the hot trie, and its frequency and
recency are tracked from the block height at which it is created.

State Transitions in the Dual-Trie System. For ease of
understanding, we outline the complete state transition process
in Algorithm 1. During transaction processing, the system
verifies a state by querying the hot trie, the cold trie, or treating
it as non-existent. When a state from the cold trie is accessed,
it is transferred to the hot trie through state mining to support
faster future retrieval (lines 3-5). For a new account, the system
creates and inserts the state directly into the hot trie (lines 7-
9). Any state access results in an update to the state’s metadata
for expiry tracking. The expiry estimation uses a block height
h at which the state is accessed and a predefined recency
threshold ∆T . Considering recency, the system determines
that the state should expire at h + ∆T , given no intervening
accesses. Considering access frequency, the system maintains
two values: creationHeight[addr], which records the block
height of the state’s creation, and accessTime[addr], which
accumulates the total access count. Using these values and
the access frequency threshold F , the system calculates the
expected block height when the access frequency falls below
the threshold: creationHeight[addr] + ⌈accessTime[addr]/F ⌉.
This calculated value, along with the recency consideration,
determines the final expiry timer for the address (lines 10-12).
After processing all transactions within a block, the system
iterates through states and expires those whose expiry timers
coincide with the current block height (lines 13-15).

2) Cold Trie Encoding: As a subsequent step, the cold trie
can be erasure coded to save storage as Algorithm 2 depicts.
If the cold trie is directly serialized into a byte array and
then divided into chunks, responding to each query requires
the recovery of the entire cold trie, which is time-consuming.
We observe that tries employ constant-sized hashes and are
typically balanced. For instance, the sizes of 16 subtries,
each rooted at one of the sixteen children of the MPT root
are almost equal as illustrated in Fig. 4. To achieve data
availability, we design the function SplitTrie (lines 1-10) to

Algorithm 2: Cold Trie Encoding

1 // SplitTrie
Input: State trie T with rt as the root, and an integer k
Output: Data chunks {d1, d2, · · · , dk}

2 subtrieRoots = {rt}
3 while |subtrieRoots| < k do
4 for each root ∈ subtrieRoots do
5 Remove root from subtrieRoots
6 Add all children of root to subtrieRoots

7 for each rooti ∈ subtrieRoots do
8 subtriei ← subtrie of T rooted at rooti
9 merklePathi ← Merkle path between rt and rooti

10 di ← subtriei∥merklePathi

11 // Encoding
Input: State trie T , and group gi

12 k ← m← |gi|/2
13 ST ← {st1, st2, · · · , stk} ← SplitTrie(T , k)
14 C ← {c1, c2, · · · , ck+m} ← RS.Encode(ST , k,m)
15 for cj ∈ C do
16 hj ← H(cj)
17 if i ∈ DHT.GetClosestPeers(hj) then
18 store cj

19 H ← H∪ {hj}
20 Store H
21 // Decoding

Input: hashes of all chunks H
22 for hj ∈ H do
23 cj ← DHT.Get(hj), C ← C ∪ cj
24 if |C| ≥ k then
25 T ← RS.Decode(C)

partition the cold trie into multiple balanced subtries. These
subtries serve as data chunks and are used as inputs into the
encoding function. Given that k = |g|/2 = 2t−1 and the cold
trie is balanced, the cold trie can be segmented into k subtries
of approximately equal size. This process ensures that each
data chunk remains operational despite that the entire cold trie
is encoded. To enable a node storing a data chunk to verify its
origin from the complete cold trie, the Merkle path from the
subtrie’s root to the root of the cold trie is included as proof
with the data chunk (lines 9-10). Finally, a (k,m)-RS code
is applied to generate m parity chunks, with the total k +m
chunks as a strip (lines 11-20).

D. Network Maintenance for Dynamic Networks

The dynamic nature of node participation in permissionless
networks presents a significant challenge in reducing storage.
Frequent node arrivals and departures require computationally
intensive EC re-encoding, hindering network efficiency and
data availability. To mitigate this, we propose a novel network
maintenance scheme. As detailed in Sections IV-B and IV-C,
larger EC groups require less storage space at each node.
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This inherent characteristic incentivizes nodes to join larger
groups, thereby minimizing their individual storage consump-
tion. However, larger groups increase the risk of unreliable
storage. Therefore, we design a new simple rule: larger groups
must be formed by merging two smaller ones. This rule
ensures that a node must remain within the network for a
prolonged period to become part of a larger group, effectively
mitigating the risk associated with short-lived participants.

Group Upgrade and Downgrade. The network maintenance
protocol operates as follows: When two groups of identical
size are identified, they can merge into a larger single group,
enjoying the lower redundancy. Based on the network setting,
the number of groups is directly proportional to the number
of ‘1’ bits in the binary representation of N . For example,
a network with 136 nodes would finally be organized into
two stable groups: one large group g(128) (encoded using
(64, 64)-RS) and another smaller group g(8) (encoded using
(4, 4)-RS). This arrangement reflects the binary representation
of 136, which is 10001000. Given that the storage costs for
maintaining the blockchain in a group scale with the group’s
size, the overall storage costs for the network show a linear
relationship with the number of groups. This number can
range from an optimal scenario of 1 to a worst-case scenario
of log(N), with an average of log(N)/2. The analysis is
elaborated in Section V.

If a node leaves the network or encounters a malfunction,
two scenarios arise: temporary absence and prolonged absence.
A node may be temporarily offline with the expectation of
returning soon. During this period, the group can continue its
operations without disruption, as the redundancy provided by
the EC scheme ensures continued access to blockchain data.
However, if the number of active nodes drops below a critical
threshold, the network would be vulnerable to Byzantine
attacks. Therefore, when the rate of node departure in a
group exceeds 1/4 of its total members, a downgrade process
is initiated to maintain the group’s resilience against up to
1/3 of nodes potentially exhibiting Byzantine behavior. To
downgrade a group that has lost a quarter of its nodes, the
remaining 3/4 of members are reorganized into two smaller
groups. One group will consist of 1/4 of the remaining nodes,
and the other will include 1/2. This downgrade ensures that
both new groups adhere to a size 2t, facilitating smooth future
adjustments.

Chunk Update. Few investigations have addressed the dy-

namics of chunk updates during data loss and recovery. When
a group upgrade or downgrade occurs, the blockchain data
within these groups must be modified to conform to the new
configuration. Specifically, the transition from a (k,m)-RS
scheme to a (2k, 2m)-RS scheme requires transforming the
stored chunks, involving merging adjacent k-block batches
into 2k-block batches. Consider two groups, g1 and g2, using
a (k,m)-RS scheme, which merge to form a new group g3
under a (2k, 2m)-RS scheme. The nodes gk1 and gk2 hold the
original data chunks, while the nodes gm1 and gm2 store the
corresponding parity chunks. In EC-Chain, data blocks are
organized into batches denoted as (B1, B2, · · · ), with each
batch consisting of 2k blocks. For data chunk update, gk1
retains only odd-numbered batches, while gk2 retains only
even-numbered batches. Consequently, upon merging into g3,
gk1 and gk2 collectively possess the encoded 2k-block batches,
obviating the need for data chunk redistribution. Subsequently,
nodes gm1 and gm2 can request the necessary data chunks from
gk1 and gk2 to generate the parity chunks using (2k, 2m)-RS.

The transition from a (k,m)-RS scheme to a (2k, 2m)-
RS scheme for state data requires a split operation on the
subtries. Since gk1 and gk2 share the same encoded cold trie,
we can consider the node pairs (p1, p2) where p1 ∈ gk1 and
p2 ∈ gk2 handle the same subtrie. Each node within such a pair
independently divides its subtrie into two balanced subtries,
denoted as T1 and T2. Thereafter, p1 retains T1 and p2 retains
T2. Finally, both gk1 and gk2 acquire the encoded state data
according to the new (2k, 2m)-RS scheme and proceed to
generate parity chunks from these data chunks. The process
of updating the ledger and state data during a downgrade is
the reverse of the upgrade process, thus we do not repeat it
for brevity.

V. ANALYSIS ON REDUNDANCY AND BANDWIDTH COST

We analyze the storage redundancy and bandwidth con-
sumption of EC-Chain from a theoretical perspective.

A. Storage Redundancy

We provide a formal definition of redundancy within a
blockchain network.

Definition 1 (Redundancy). Let S represent the storage re-
quirement for a node to maintain the ledger and state data.
The redundancy of a blockchain network is defined as the total
storage costs in all nodes, denoted k · S. For full replication,
the redundancy is N · S, where N is the number of nodes.

Theorem 1. The redundancy of EC-Chain is upper bounded
by 2⌈logN⌉ · S and lower bounded by 2S, with an expected
value of ⌈logN⌉ · S.

Proof. For any group g of size 2t (t ≥ 2), a (2t−1, 2t−1)-RS
code is used to store blockchain data, resulting in a storage
overhead of (2t−1+2t−1) · S

2t−1 = 2S. This indicates that the
storage overhead per group is 2S, regardless of the group’s
size. So the redundancy of EC-Chain depends solely on the
number of groups. According to the network maintenance
protocol, groups of the same size merge into larger groups.
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Hence, under stable conditions, there will not be multiple
groups of identical sizes, with all group sizes being powers
of 2. The group structure in EC-Chain can be interpreted as a
binary decomposition of the total number of nodes N , where
the number of groups corresponds to the number of 1s in
the binary representation of N . For a randomly distributed
N , the number of groups falls within [1, ⌈logN⌉]. Thus, the
redundancy of EC-Chain is upper bounded by 2⌈logN⌉ · S,
lower bounded by 2S, and has an expected value of ⌈logN⌉·S.
This represents a significant reduction compared to the N · S
redundancy associated with full replication.

B. Bandwidth Cost

To analyze the impacts of dynamics, we define the node
arrival rate as α (α ≥ 4 w.l.o.g.) and the departure rate
as β(β ≥ 0). The relationship between α and β delineates
two distinct scenarios of network evolution: rapid growth
(α > β) and dynamic equilibrium (α = β). The rapid growth
scenario signifies a significant increase in the number of nodes,
typically observed during periods of blockchain expansion. In
contrast, the dynamic equilibrium scenario reflects a stable
network with a constant user base. These scenarios cover the
primary conditions encountered by blockchains.

Theorem 2. The total bandwidth cost of EC-Chain is upper
bounded by ( 54α− 1 + ⌊logN⌋+ β)S and lower bounded by
( 54α− ⌈log

α
4 ⌉)S.

Proof. When nodes join EC-Chain, they initially require a
complete copy of the blockchain data from a group that
can fully recover the data, resulting in a bandwidth cost of
αS. Subsequently, group upgrades might occur. Newly added
nodes also merge into new groups until no two groups have
the same size when they become stable. This process involves
⌊ α
4×2⌋ + ⌊

α
8×2⌋ + · · · =

α
4 − wt(α4 ) group upgrades, where

wt(x) represents the Hamming weight of an integer x, i.e.
the number of 1s in the binary representation of x, with
1 ≤ wt(x) ≤ ⌈log x⌉. In the worst case, the addition of one
node could trigger upgrades in all old groups until they merge
into a single group, leading to ⌊logN⌋ group upgrades and a
total cost of ⌊logN⌋S. Hence, the worst-case bandwidth cost
of adding a node is ( 54α − 1 + ⌊logN⌋)S. In the best case,
no old groups are upgraded, resulting in a bandwidth cost
of ( 54α− ⌈log

α
4 ⌉)S. Despite these costs, group upgrades can

occur in parallel. In EC-Chain, a group will be downgraded
and require data recovery if it loses 1/4 of its nodes. In the
worst-case scenario, β node departures could lead to β groups
being downgraded, resulting in a bandwidth cost of βS. In the
best case, departures do not trigger any downgrade, so there
will be no additional cost. Combining the costs associated with
the arrivals and departures of the nodes, the overall bandwidth
cost is bounded by ( 54α− 1+ ⌊logN⌋+β)S and bounded by
( 54α− ⌈log

α
4 ⌉)S.

VI. EVALUATION

We conduct experiments to evaluate the performance of EC-
Chain and compare it with Ethereum under various configu-

rations.

A. Implementation and Experiment Setup

We implement EC-Chain on top of go-ethereum4 (com-
monly known as geth), the most widely used Ethereum im-
plementation developed in Golang. As illustrated in Fig. 5,
we integrate the ledger encoding module with 631 lines of
code (LOCs) and state encoding module with 967 LOCs
into Ethereum’s blockchain database. Furthermore, we code a
network maintenance module of 429 LOCs and integrate it into
Ethereum’s p2p module responsible for network management.
Besides, the RS coding library is provided by Klaus Post5,
and the DHT library is supplied by Protocol Labs6.

EVMTransactions Read & Write

Call

State encoding module
(967 LOCs)

Dual-trie State 
management

Cold trie
encoding

Cold trie

Ledger encoding module
(631 LOCs)

Batch 
encoding

Height-based 
encoding

Historical 
blocks

Network maintenance module (429 LOCs)

Group update 
(Upgrade & Downgrade) Chunk updateRS parameters

Block fetcherBlocks

Fig. 5. The implementation of EC-Chain

EC-Chain’s performance is primarily influenced by: the
network size N , the recency threshold ∆T , and the frequency
threshold F . Therefore, our evaluation included testing EC-
Chain’s performance with varying group sizes and thresholds.
To demonstrate the performance improvement brought by EC-
Chain, we use go-ethereum as a baseline in our evaluation.
We select transactions from the first 4 million blocks of the
Ethereum mainnet and replay them during the evaluation. In
terms of the running environment, up to 64 blockchain nodes
are distributed across 17 regions in 10 countries. Each node
is equipped with an 8-Core CPU, 32 GB of memory, and a
512 GB NVMe SSD, all running Ubuntu 22.04 LTS. Each
node has a bandwidth of 1 Gbps. Additionally, we run a
client in full sync mode to synchronize transactions from the
Ethereum mainnet and forward them to the blockchain nodes
for transaction replay.

B. Storage Costs

First, we evaluate the storage costs of EC-Chain. Fig. 6
shows the average storage costs per node in the network after
replaying transactions in each block. Fig. 6(a) illustrates the
impact of N on EC-Chain’s storage costs, with thresholds set
to ∆T = 104 and F = 10−2. The storage per node decreases
with the increasing N . When N = 64, at a block height of 4
million, the storage costs per EC-Chain node is 91.8% lower
than that of an Ethereum node. The results also indicate that
doubling N nearly halves the storage costs per node. This
reduction occurs mainly because data is encoded by (k,m)-
RS with k = m = |g|/2. Fig. 6(b) depicts the storage costs
across various thresholds, with N held constant at 8. The

4https://github.com/ethereum/go-ethereum
5https://github.com/klauspost/reedsolomon
6https://github.com/libp2p/go-libp2p-kad-dht
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Fig. 6. The storage costs per node.
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Fig. 9. The throughput.

findings reveal that increasing the frequency threshold F and
decreasing the recency threshold ∆T lead to reduced storage
costs, as more states are moved to the cold trie for erasure
coding.

C. Latency of Network Maintenance

We evaluate the latency of network maintenance as shown
in Fig. 7. For upgrades, we test the latency of combining
two g(16) into one g(32), and two g(32) into one g(64). For
downgrades, we examine the performance of downgrading
a g(32) (8 nodes leaving, 24 left) into g(16) and g(8), and

downgrading g(64) (16 nodes leaving, 48 left) into g(32) and
g(16). We also evaluate how varying thresholds impact these
processes. The latency increases as the blockchain expands due
to the extended time required for chunk updates caused by the
larger volume of ledger and state data. When ∆T increases
and F decreases, a greater number of states remain in the
hot trie, leading to reduced latency for both group upgrades
and downgrades, as the fully replicated hot trie eliminates
the need for updates. Moreover, larger groups exhibit lower
latency compared to smaller groups because they benefit from
more concurrent data transfers, optimizing the use of available
bandwidth. Additionally, by comparing Fig. 7(a) and Fig. 7(b),
it is evident that the latency for upgrades is slightly lower than
for downgrades. This arises because, during group upgrades,
most data chunks are accessible. In contrast, during down-
grades caused by node disparity, there is a higher likelihood
of missing data chunks, requiring additional decoding efforts
from the remaining parity chunks.

D. Transaction Latency and Throughput

We measure the transaction latency in second and through-
put in transactions per second (TPS), as shown in Fig. 8 and
Fig. 9. The latency is defined as the time interval from when a
client sends a transaction until the transaction is confirmed by
the blockchain. In Fig. 8(a), the transaction latency between
Ethereum and EC-Chain (for varying values of N ) is analyzed,
with EC-Chain’s parameters configured to ∆T = 104 and
F = 10−2. EC-Chain under different N exhibits similar
latency to Etheruem, suggesting minimal impact of N on
transaction latency. Figure 8(b) presents the latency under vari-
ous thresholds, with N fixed at 8. When EC-Chain’s thresholds
are set to ∆T = 104 and F = 10−2, the latency between EC-
Chain and Ethereum is nearly identical. As F decreases or ∆T
increases, a greater number of states are maintained in the hot
trie, allowing for faster verification. Another key performance
indicator for a blockchain, throughput, is depicted in Figure
9. We also examine this metric under varying network sizes
(shown in Figure 9(a)) and different thresholds (shown in
Figure 9(b)). The results demonstrate that in all scenarios, EC-
Chain maintains a throughput nearly equal to that of Ethereum,
indicating that EC-Chain does not experience a decrease in
throughput.

VII. CONCLUSION

We propose EC-Chain, a cost-effective storage solution
for permissionless blockchain systems that optimizes storage
using erasure coding. EC-Chain can minimize the storage costs
associated with both ledger data and state data. To reduce the
storage costs of state data, EC-Chain introduces a dual-trie
state management system, which migrates inactive states to a
cold trie, which can be erasure-coded but ensures high data
availability. Additionally, we design a network maintenance
strategy to achieve adaptability when keeping low data redun-
dancy.
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