zkCross: A Novel Architecture for Cross-Chain Privacy-Preserving Auditing

Yihao Guo Minghui Xu” Xiuzhen Cheng Dongxiao Yu
Shandong University Shandong University Shandong University Shandong University
Wangjie Qiu Gang Qu Weibing Wang
Beihang University University of Maryland Cloud Inspur Information Technology Co., Ltd.
Mingming Song

Cloud Inspur Information Technology Co., Ltd.

Abstract

One of the key areas of focus in blockchain research is how to
realize privacy-preserving auditing without sacrificing the sys-
tem’s security and trustworthiness. However, simultaneously
achieving auditing and privacy protection, two seemingly con-
tradictory objectives, is challenging because an auditing sys-
tem would require transparency and accountability which
might create privacy and security vulnerabilities. This be-
comes worse in cross-chain scenarios, where the information
silos from multiple chains further complicate the problem. In
this paper, we identify three important challenges in cross-
chain privacy-preserving auditing, namely Cross-chain Linka-
bility Exposure (CLE), Incompatibility of Privacy and Audit-
ing (IPA), and Full Auditing Inefficiency (FAI). To overcome
these challenges, we propose zkCross, which is a novel two-
layer cross-chain architecture equipped with three cross-chain
protocols to achieve privacy-preserving cross-chain audit-
ing. Among these three protocols, two are privacy-preserving
cross-chain protocols for transfer and exchange, respectively;
the third one is an efficient cross-chain auditing protocol.
These protocols are built on solid cross-chain schemes to
guarantee privacy protection and audit efficiency. We imple-
ment zkCross on both local and cloud servers and perform
comprehensive tests to validate that zkCross is well-suited for
processing large-scale privacy-preserving auditing tasks. We
evaluate the performance of the proposed protocols in terms
of run time, latency, throughput, gas consumption, audit time,
and proof size to demonstrate their practicality.

1 Introduction

Cross-chain technology [2] has been considered to be one of
the effective ways to enhance communications and interop-
erability among separate blockchain systems. Users located
at different blockchains can realize cross-chain transfer and
exchange through cross-chain protocols. Many cross-chain

*Corresponding author

protocols have arisen recently [15, 30,36, 40], with their pri-
mary focuses residing on various aspects such as universality,
security, and efficiency, largely neglecting privacy and audit-
ing challenges. This omission may impede the widespread
adoption of cross-chain mechanisms and result in significant
security vulnerabilities, privacy risks, and even the loss of
trust and credibility.

Privacy protection and auditing are two vital requirements
in cross-chain operations. As the awareness of the worth of
data grows, so does the desire for privacy protection [23, 38].
Nevertheless, privacy considerations in cross-chain need to
protect not only the confidentiality of information being trans-
ferred across different blockchains but also the interactions
among users across multiple chains. Disclosure of the rela-
tionship of cross-chain interactions can lead to a number of
privacy risks, including the possibility of tracing the transfer
of funds between chains or identifying parties involved in a
specific transaction. This can potentially undermine the over-
all security of cross-chain systems [6]. Additionally, auditing
plays an important role in cross-chain scenarios. For instance,
auditing is needed to ensure the proper functioning of the
interactions between two parties that need to collaborate but
may potentially have conflicts of interest [22].

However, privacy protection and auditing in blockchain
systems are two conflicting goals, as the former demands
maintaining data confidentiality and minimizing data expo-
sure, while the latter requires transparency and access to data.
Therefore juggling the issues of privacy protection and audit-
ing is difficult, which has long been an important research
topic for single blockchains [4, 7,9, 34,37]. This problem
becomes even more challenging in cross-chain. Specifically,
the design premise of a single chain assumes that the au-
ditors, serving as blockchain nodes, can access information
within the chain. However, a multi-chain scenario breaks this
premise as auditors of one chain cannot obtain all information
from another chain. Intuitively, auditors can register accounts
on all chains, but this is extremely resource-intensive and
impractical for real-world applications, particularly in large-
scale cross-chain scenarios. For instance, the ledger sizes of

Bitcoin and Ethereum have reached 500 and 700 GB, respec-
tively, and they continue to grow over time [17]. This implies
that when auditing Bitcoin and Ethereum, an auditor requires
at least terabyte-level storage space, and as the number of
blockchains in the network grows, this demand also increases.
This poses a significant barrier for auditors. As a result, it is
hard for single-chain solutions to be inherited in cross-chain.

This paper aims to make a contribution by first identify-
ing three key challenges faced by cross-chain privacy pro-
tection and auditing, then presenting feasible solutions. The
first challenge is the Cross-chain Linkability Exposure prob-
lem (CLE), which enables adversaries to obtain linkability
between the two parties involved in cross-chain interactions,
thereby exposing privacy. Addressing this issue requires de-
signing corresponding cross-chain privacy-aware protocols
for different cross-chain activities. These protocols must not
permit the involvement of a third party that could compro-
mise the security of the entire blockchain system. Second,
we need to implement an audit protocol based on publicly
available information, and this protocol should not contradict
the protocol aimed at addressing the CLE problem. There-
fore the bottleneck of cross-chain privacy protection with
auditing, namely the Incompatibility of Privacy and Auditing
(IPA), needs to be overcome. The third challenge is termed
Full Auditing Inefficiency (FAI) problem, which is caused by
the presence of multiple heterogeneous chains that may lead
to extremely low auditing efficiency. These challenges are
detailed in Section 3.2.

In this paper, we propose zkCross to effectively address
these three challenges. Specifically, we first present a two-
layer cross-chain architecture, with the lower layer including
multiple blockchains that can interact with each other, and the
upper layer being a blockchain consisting of auditors. Then,
in the pursuit of addressing the CLE problem, we propose two
different cross-chain privacy protection protocols based on
zero-knowledge proofs for two cross-chain activities (namely
cross-chain transfer and cross-chain exchange), which pre-
serve privacy without requiring any trusted third party. Finally,
in an effort to address the IPA and FAI problems, we present
a cross-chain auditing protocol, which compresses the audit-
ing processes and transaction verification process into a new
circuit. Such a design ensures that all auditors do not need to
obtain the entire transaction content to guarantee the correct-
ness of auditing tasks, and they can audit a linearly growing
number of transactions within a constant time.

zkCross is developed for general blockchain systems with
cross-chain interoperability requirements. That is, it is appli-
cable to both permissionless and permissioned blockchains
(introduced in Section 2). For convenience, we highlight our
contributions as follows:

1. zkCross is the first cross-chain scheme that considers
both privacy protection and auditing for cross-chain ac-
tivities. To the best of our knowledge, solutions that
simultaneously consider both privacy protection and au-

diting only exist in single-chain systems while it is hardly
possible to adopt them for cross-chain operations.

2. A two-layer cross-chain architecture is designed to sup-
port the realization of simultaneous privacy protection
and auditing. This architecture is auditor-friendly. It al-
lows the decoupling of itself with the cross-chain inter-
action protocols, making the design of the latter more
flexible.

3. Two cross-chain privacy-preserving protocols are pro-
posed in this paper, which can guarantee the unlinkability
of the interacting parties, ensure the atomicity of cross-
chain interactions, and further solve the CLE problem
without introducing any trusted third party.

4. We design a cross-chain auditing protocol, that can ef-
fectively address the challenges of IPA and FAI. This
protocol can enhance the auditing efficiency of the upper
layer, without causing conflicts with addressing the CLE
issue.

5. To verify the performance of zkCross, we conduct exten-
sive experiments over a 200-node blockchain network,
and the results validate the effectiveness and efficiency
of our design.

The remainder of this paper is structured as follows. In Sec-
tion 2, we provide the background of our work. Section 3 pro-
vides an overview of the most relevant literature and proposes
the three cross-chain challenges. The models of our proposed
scheme, along with a brief introduction to the necessary pre-
liminary knowledge, are described in Section 4. The technical
details of our zkCross scheme and the related security anal-
ysis are presented in Section 5 and Section 6, respectively.
The performance of zkCross is reported in Section 7. Finally,
Section 8 offers conclusive remarks and directions for future
research.

2 Background

This section provides the necessary background to understand
our work, including blockchain and cross-chain activities.

2.1 Blockchain

Blockchain [32] is a shared, distributed ledger that records all
transactions and is maintained by peer nodes in a decentral-
ized network. Each transaction is stored in a block and linked
together in a chronological chain, hence the name blockchain.
One of the key features of blockchain is its immutability,
meaning once a transaction is recorded, it cannot be altered.
Immutability ensures the integrity of the data stored on the
blockchain, making it secure and resistant to unauthorized
modifications. Additionally, blockchain eliminates the need
for intermediaries in transactions, solving the problem of a

single point of failure. Transparency in blockchain denotes
the ability to access all transactions. This is in contrast to
traditional banks and service providers, which do not grant
users access to their complete ledgers. Originally developed
for Bitcoin [32], blockchain has since evolved to be applied
in various industries beyond cryptocurrency, such as finance,
the Internet of Things, smart grids, and supply chain manage-
ment [45]. To accommodate various scenarios, blockchain
has gradually diverged into two types: permissionless and
permissioned blockchains [38]. Permissionless blockchains
are decentralized networks where anyone can join, partici-
pate, and validate transactions without needing approval. Per-
missioned blockchains are centralized or semi-centralized
networks where access and participation are restricted to ap-
proved entities.

2.2 Cross-chain Activities

Cross-chain technology facilitates the interaction between
two independent blockchains [2]. Depending on the type
of cross-chain activities, cross-chain interactions can be di-
vided into cross-chain transfers and cross-chain exchanges.
Cross-chain transfers refer to the movement of assets between
two blockchains, which involve the process of burning assets
on one blockchain and minting them on another blockchain.
Cross-chain exchanges, conceptually, involve a two-way pro-
cess of cross-chain transfers. They refer to the swapping of
assets between two distinct blockchains. Both participating
blockchains individually lock the assets intended for exchange
and subsequently unlock them to receive the corresponding
assets from the other blockchain.

While the concept of these two activities may appear sim-
ilar, the specific technical and operational aspects of cross-
chain asset transfer and exchange protocols are different and
require distinct approaches and solutions. For instance, vari-
ous cross-chain exchange protocols, such as HTLC and the
works in [6, 18,30], do not support asset transfer. While other
schemes such as the notary scheme and relay chains (intro-
duced in Section 3), have the capability to facilitate both
cross-chain asset transfer and exchange, albeit often requiring
the involvement of third-party entities possessing significant
authority, thereby introducing centralized security risks.

3 Related Work and Motivations

In this section, we first briefly introduce the most related work
for cross-chain interactions, then present the motivations and
implications of our design by detailing the three cross-chain
challenges that have largely been overlooked by the related
research.

3.1 Related Work

State-of-the-art cross-chain schemes can be divided into two
categories: either chain-based or bridge-based. Chain-based
schemes, such as side chains [28] and hashed timelock con-
tract (HTLC) [31], refer to those that rely on the inherent
mechanisms of a chain, without the requirement for additional
entities. A side chain is a separate blockchain that operates
in conjunction with a parent blockchain. ZeroCross [21] is a
privacy-preserving side chain solution based on the Monero
platform, and Zedoo [10], which implements auditing based
on the zk-SNARK technology. Baldimtsi et al. [1] proposed a
scheme to connect anonymous chains. HTLC utilizes a combi-
nation of a hash lock and a time lock to support the cross-chain
exchange activity XCLAIM [41] alleviates some of the strin-
gent assumptions inherent in the original HTLC framework,
such as the necessity for the concurrent online presence; Desh-
pande et al. [6] added privacy protection features to HTLC
based on the Schnorr signatures; MAD-HTLC [31] effec-
tively counters the incentive manipulation attack utilizing a
blockchain-based incentive mechanism; Cross-Channel [15]
increases the throughput of a cross-chain system based on
HTLC; Thyagarajan et al. [30] employed verifiable timed
signatures instead of time locks.

Bridge-based solutions, such as notary schemes [40] and
relay chains [2], need the implementation of a third compo-
nent to facilitate the interactions among chains. In the context
of a notary scheme, a trusted third-party entity, referred to
as a notary, performs the duties of validating the authenticity
of cross-chain transactions. The design of a notary scheme
is straightforward; however, it poses a potential single point
of failure risk. Yin et al. [40] adopted secure hardware and
cryptographic techniques to enhance the security of notary
platforms. As for arelay chain scheme, a dedicated blockchain
network, referred to as the relay chain, serves the purpose of
enabling the transfer of assets between participating chains.
zkBridge [36] proposed deVirgo to enhance the verification ef-
ficiency of cross-chain bridges. Wang et al. [33] proposed the
concept of governing the chain by chain while BeDCV [44]
employs a supervision chain for decentralized auditing, utiliz-
ing technologies such as homomorphic encryption. Note that,
bridge-based schemes introduce trusted mechanisms such
as notaries and relay chains, which enable the simultaneous
consideration of both cross-chain transfers and cross-chain
exchanges. Moreover, the bridge-based scheme is a type of
star-shaped architecture, making it suitable for auditing tasks.
However, it carries the risk of a single point of failure.

3.2 Challenges of Cross-Chain Privacy Protec-
tion & Auditing

Despite the availability of several well-conceived cross-chain
solutions, significant challenges persist in the areas of cross-
chain privacy preservation and auditing, including the Cross-

chain Linkability Exposure problem (CLE), the Incompatibil-
ity issue of Privacy and Auditing (IPA), and the Full Auditing
Inefficiency problem (FAI). The details of these three chal-
lenges are presented below.

Challenge 1: CLE. Some solutions have been proposed to ad-
dress cross-chain privacy concerns. Specifically, the schemes
in [39,43] are highly tied to the application scenarios. The
privacy protection in [1, 21] benefits from its underlying
blockchain platform, such as Monero and Zcash, which makes
it incompatible with other blockchain systems. The mecha-
nism in [6] provides a solution for cross-chain exchange but
requires both parties to trust the same secret as a prerequisite,
which creates challenges for two individuals who lack trust
in one another to reach an agreement. Based on the above
analysis, it is evident that the current research on cross-chain
privacy protection is insufficient, and there also exist concerns
regarding their generality and security risks. Additionally,
existing works overlook the significant differences between
cross-chain transfer and cross-chain exchange, attempting to
use a single protocol to support both activities, which needs
third-party entities and thereby poses security risks (such as
the bridge-based scheme). One can see that the difficulty in
addressing the CLE problem lies in comprehending and dif-
ferentiating the activities and characteristics of blockchain
interactions while using more adaptable techniques to obscure
the relations between the participants. More importantly, the
entire process cannot introduce third parties to disrupt the
security of the system.

Challenge 2: TPA. The demands for both privacy protec-
tion and auditing often exist concurrently in a system and
these two requirements have conflicting ultimate goals. To
the best of our knowledge, no existing cross-chain work can
solve this conflict. Current cross-chain privacy-preserving
solutions [1,6,21,39,43] are not initially designed with audit-
ing support in mind. Their primary focus is directed towards
simultaneously minimizing the disclosure of information and
ensuring the integrity of the protocols, disregarding consid-
erations for information verifiability. Moreover, considering
that in permissioned blockchains, auditors are external to a
blockchain, they may not have access to the transaction in-
formation. For example, in a multi-chain system comprising
several companies, internal nodes engage in frequent interac-
tions, while third-party entities, such as banks and insurance
companies, assume the role of auditors. The privacy of inter-
nal data, including receipts and employee information, cannot
be disclosed to external entities. However, this restriction pre-
vents banks from conducting audits, consequently impeding
their ability to perform operations such as lending. To effec-
tively address the above issues, it becomes crucial to enable
the validation of private information by leveraging publicly
accessible data.

Challenge 3: FAI. Current auditing works can be further
broken down into two distinct subcategories: incentive-based
and relay-based. The former, such as the fisherman in Polka-

dot [35], utilizes an incentive mechanism in which auditors
selectively verify a subset of transactions to get the corre-
sponding reward. The latter employs a relay mechanism, such
as an entity or a network, to facilitate the thorough examina-
tion of all transactions in order to mitigate the risks of ma-
licious activities [33,44]. In general, a relay-based auditing
scheme offers better security as it audits all transactions (full
auditing), however, it may be less efficient than an incentive-
based audit scheme. Specifically, assuming k blockchains and
an average of n transactions processed per chain in a unit
of time, the workload responsibility of each audit node in a
relay-based scheme can be estimated as O(k x n). This poses
a high computational demand for auditors and leads to issues
with inefficient verification. More seriously, as the number of
blockchains continues to grow, the limitations of both meth-
ods in terms of auditing efficiency pose a challenge to their
adoption in real-world settings. To address this issue, it is
crucial to design an auditor-friendly scheme that guarantees
security and efficiency while providing full auditing.
Motivations and Implications. Motivated by the above ob-
servations, we propose zkCross consisting of a novel architec-
ture with three protocols. Compared to bridge-based schemes
(introduced in Section 3), the architecture in zkCross adopts a
tree-shaped structure. This design takes into consideration the
requirements of both privacy protection and auditing, mitigat-
ing the centralization risks posed by auditing in cross-chain
interactions. In the design of privacy-preserving protocols,
zkCross utilizes SPV (Simplified Payment Verification) [32]
and HTLC (Hashed Timelock Contracts) [31], two funda-
mental techniques supporting decentralized cross-chain in-
teractions, to facilitate cross-chain transfers and exchanges.
zkCross adopts zk-SNARKSs, hash functions, and denomina-
tion mechanisms to address all factors that compromise the
unlinkability, including receiver addresses, preimages, and
transaction amounts. For the design of auditing protocols,
zkCross leverages the succinctness of zk-SNARKSs and of-
floads complex computational tasks to off-chain, thereby en-
hancing on-chain auditing efficiency.

4 The Model and Preliminaries

In this section, we first define our network and threat models.
Then, we present the zk-Rollup, hashed timelock contracts,
and simplified payment verification, which are the basic build-
ing blocks of zkCross.

4.1 Models

Network Model. zkCross is a two-layer cross-chain archi-
tecture equipped with three protocols. All entities in zkCross
refer to real-world users who own blockchain accounts and
can engage in off-chain and on-chain operations. Furthermore,
each entity can possess multiple accounts, with each account
equivalent to a node on the blockchain.

In zkCross, the lower layer has multiple independent
blockchains (which we refer to as ordinary chains), where
there are cross-chain transactions between a sender (.S) and a
receiver (X). Each node in an ordinary chain can serve as a
committer (Cy), facilitating the aggregation of chain-related
data. We assume that there is at least one honest committer
in each ordinary blockchain [36]. The ordinary chain can be
either permissionless or permissioned blockchains. In permis-
sionless blockchains, all entities can register accounts and
access transactions. In permissioned blockchains, external
nodes, such as auditors in the upper layer, cannot access trans-
actions as freely as in permissionless chains. Consequently,
we assume that auditors may only gain access to block headers
of permissioned blockchains through auxiliary means, such as
Gateways [25] or blockchain explorers, to facilitate auditing
procedures while preserving transaction privacy.

The upper layer comprises an audit chain, including nodes
with two roles: committers and auditors. To upload the col-
lected chain-related data to the audit chain and earn rewards,
the lower-layer committer needs to register an account and
become an upper-layer committer on the audit chain. Audi-
tors, represented by Ay, are responsible for auditing the data
submitted by upper-layer committers. Based on the incentive
mechanism of blockchains, honest upper-layer committers are
duly rewarded. The audit chain is a permissionless blockchain
because it allows all entities to register committer nodes on
the audit chain.

Threat Model. Nodes are running in polynomial time and
might exhibit Byzantine behaviors within the blockchain net-
work. However, their voting power cannot exceed predeter-
mined thresholds to maintain the security of the blockchain
consensus [15,30,31, 36]. For example, in PBFT (Practical
Byzantine Fault Tolerance), the number of Byzantine nodes
must be below one-third of the total, and in PoW (Proof of
Work), malicious nodes cannot control more than 50% of the
network’s computing power.

Design Goals. zkCross aims to achieve the following goals
to answer the challenges in Section 3.2.

* Privacy: Let §' and " be two accounts involved in a
cross-chain transfer or exchange. zkCross aims to en-
sure the unlinkability (formally defined in Definition 1)
between ' and R

* Efficiency: If a cross-chain network has k ordinary
chains, where each chain has an average of m blocks,
and each block contains an average of n transactions,
then zkCross has an O(k x m) complexity in auditing
efficiency, comparing to O(k x m x n) for the traditional
full auditing approaches.

Definition 1 (Unlinkability [3, 11,24]). An adversary is un-
able to link the receiver’s account from the transactions initi-
ated by the sender, or conversely.

In the rest of this section, we will introduce the three key
technologies that we adopt in zkCross to help achieve these
goals.

4.2 zk-Rollup Based on zk-SNARKSs

zk-Rollup [38] is a scaling solution for blockchain net-
works, in which the “zk" stands for “zero-knowledge". zk-
SNARK [13] is a type of zero-knowledge proof technology
that is widely employed in blockchain. In the following, we
provide the definition of zk-Rollup based on zk-SNARK.
Note that, depending on a specific use case, alternative zero-
knowledge proof schemes such as deVirgo [36], can be se-
lected to replace zk-SNARK in the construction of zk-Rollup.

Definition 2 (zk-Rollup Based on zk-SNARK). zk-SNARK re-
quires the implementation of an F-arithmetic circuit A, which
enforces constraints on the computational relationships be-
tween the public input X and the private input (witness) W.
The complete process of zk-Rollup based on zk-SNARK can
be formally expressed as a three-tuple of polynomial time

algorithms T1 = (Setup, Prove, Verify).

e crs < Setup(1*,A). In zk-SNARK, the algorithm takes
a security parameter 1* and a circuit A as inputs to derive
the common reference string (crs), which is comprised of the
proving and verification keys (pk,vk) used in subsequent
proof generation and verification processes; while in zk-
Rollup, the computational logic embedded within the circuit
entails the verification of both the correctness of all trans-
action signatures and of state transitions resulting from the
executed transactions.

e T < Prove(pk,X,w). In zk-SNARK, the algorithm takes
the proving key pk, the public inputs X, and the private inputs
W, to generate a succinct zero-knowledge proof 7; while in
the process of implementing zk-Rollup, the public inputs X
include more details such as transfer amounts and address
information, and the private inputs w consist of the data such
as transaction signatures.

e 1/0 < Verify(vk,X,m). In both zk-SNARK and zk-
Rollup, the algorithm performs a verification process of the
proof ® using the verification key vk and public inputs X. Its
output is a binary value, with 1 indicating a successful verifi-
cation and 0 the opposite.

Note that, the three-tuple of the polynomial time algorithms
(Setup, Prove, Verify) represented by I, can be adapted to
various specific application scenarios by adjusting the relevant
parameters, i.e., A, X, and w.

4.3 Hashed Timelock Contracts

HTLC (Hashed TimeLock Contract) is a critical technology
that powers the Lightning Network. It has broad applications,
especially for cross-chain exchanges [31].

Definition 3 (HTLC in Cross-chain Scenarios). The HTLC
protocol necessitates that both parties involved in a trans-
action, represented by S and R, possess accounts in each
blockchain. For better elaboration, these accounts are de-
noted as S' and R! for Chain |, and S and K”for Chain Il,
for § and R, respectively. The protocol consists of three dis-
tinct stages: Lock, Unlock, and Refund.

e Lock : §' selects a random key, such as a 256-bit integer,
as the preimage pre, which is then hashed to produce the
corresponding hash value h(pre). S' then employs h(pre) to
lock the asset to be sent to & in the smart contract &' of
Chain I, and sets a timer T;. Then, ‘.R"' locks its asset being
sent to S'" in the smart contract &' of Chain Il using the same
h(pre), and sets a timer T, with Ty > To.
e Unlock : Within the time limit T, S'" presents the preimage
pre to the smart contract £ in order to unlock the asset sent
by R". Once R receives the preimage, R' provides pre to
the smart contract &' within the time limit T7, which unlocks
the asset sent by §'.

e Refund : If $" fails to provide pre within the allotted time
frame T», the locked asset in &” would be refunded to R". As
a result, 9{" cannot unlock the asset it should receive from S'
since it does not possess the necessary pre information, which
only § possesses. Consequently, in the event of T; timing-out,
the locked asset would be refunded to §'.

Note that, certain blockchain systems, including Bitcoin, do
not have native support for smart contracts. As an alternative,
HTLC can be implemented using other mechanisms such as
scripting [32]. For simplicity, this paper uses the term smart
contract to refer to a true smart contract or an implementation
technique such as scripting when discussing HTLC.

4.4 Simplified Payment Verification

SPV (Simplified Payment Verification) was proposed by
Satoshi Nakamoto [32] in 2008 and has been widely adopted
by various blockchain systems such as Ethereum since its
birth. It aims to enable lightweight clients to participate in
a blockchain network without having to store the entire on-
chain data by making use of a Merkle proof, a crucial com-
ponent that allows a light node to verify the inclusion of a
transaction in a block without downloading the entire block.
Specifically, the Merkle proof of a transaction is the combina-
tion of the Merkle path of that transaction and the root node
of the entire Merkle tree. The Merkle path of a node is the
siblings of all nodes along the path from the node to the root
of the Merkle tree.

5 The zkCross

In this section, we first present an overview of zkCross and
its advantages, then elaborate on three protocols designed for
the purpose of privacy-preserving auditing.

5.1 Overview

zkCross addresses the aforementioned challenges of CLE,
IPA, and FALI Figure | depicts its two-layer architecture and
three key protocols.

Audit chain

state root
R i .
Chain I Eij h Chain IIT
state root} ----{------ Cr=>Ap [- {state root

Cross-chain Auditing
Protocol W

ﬁ;\]&J Chain IT é[g]
N state root 4

S => R f st @Rm
Asset Transfer ™, | Asset Exchange
Protocol © \ Protocol ¢

Figure 1: Illustration of zkCross: upper-layer: the audit chain;
lower-layer: multiple ordinary chains; and the three protocols
shown in the orange boxes.

The lower layer is comprised of multiple ordinary chains,
three in Figure | marked as Chain I, Chain Il, and Chain IlI,
respectively. The upper layer encompasses an audit chain that
regulates the activities of the ordinary chains in the lower layer.
Within this architecture, each blockchain maintains a state
tree, which is essentially a binary Merkle tree. In an ordinary
chain, each leaf in its state tree represents the hash result
of an account state, encompassing public keys and balances.
For the audit chain, its state tree stores the state tree roots
of ordinary chains as leaves, establishing hierarchical links
between ordinary and audit chains.

zkCross includes two privacy protection protocols (® and
®), tailored for the two distinct cross-chain interaction activi-
ties: transfers and exchanges, respectively. Users participating
in these protocols are nodes at different ordinary chains. For
instance, a sender §' in Chain |, can employ protocol ® to se-
cretly transfer cross-chain assets to a receiver &' in Chain I,
while a sender S" in Chain Il can conduct a cross-chain ex-
change with a receiver K" in Chain 111 through the privacy-
preserving protocol ®. Both ® and & can protect the privacy
of the relationship between the interacting parties. Entities in
the audit chain primarily consist of auditors and committers.
Under the cross-chain auditing protocol W, a committer is re-
sponsible for packaging the transactions in an ordinary chain
and uploading them to the auditors to complete the auditing
process.

The two-layer architecture is capable of supporting the
interactions between various entities, such as cross-chain in-
teracting entities and auditing entities, thereby facilitating the
design of privacy-preserving cross-chain protocols and effi-
cient auditing protocols. Note that the proposed architecture
decouples auditing from cross-chain protocols (such as ® and
@) among ordinary chains. This implies that the two-layer
architecture is not restricted to privacy-preserving auditing,

it can support other protocols developed according to the
specific application scenarios. On the other hand, the cross-
chain protocols designed in this paper are not restricted to
the two-layer architecture only, they are implemented with
popular cross-chain technologies, such as SPV and HTLC,
and hence can be adopted directly or with modifications for
other multiple-chain architectures. The audit content of the
auditing protocol can be tailored to specific requirements,
encompassing tasks such as verifying transaction amounts
within a predefined range and checking if a transaction ad-
dress is blacklisted. The protocol W can conduct audits with-
out exposing the information of the lower-layer transactions.

In the remainder of this section, we elaborate on the two
privacy-preserving cross-chain protocols and the efficient au-
diting protocol.

5.2 Privacy-preserving Cross-chain Protocols

In this subsection, we present two different privacy-preserving
protocols to address the CLE problem.

5.2.1 An Cross-chain Transfer Protocol with Privacy
Preservation

In the process of cross-chain transfer based on SPV, the re-
ceiver address and the transfer amount of a transaction are
two important factors that can expose the correlation between
the parties involved in the interaction. Obviously, one needs
to hide the destination address of a transfer. Concealing the
transfer amount is necessary too, as the process of a cross-
chain transfer involves the burning of funds on one chain
and the minting of an equivalent amount on another chain.
For example, consider a situation where the public exchange
rate between Bitcoin and Ether is 1:10. During a cross-chain
transfer, a fund in the form of one Bitcoin is burned on its
original chain, and as a result, 10 Ether of equivalent value is
minted on the destination Ethereum. Therefore, if the trans-
fer amount is public, adversaries can deduce the correlation
between the parties by examining the burning and minting
transactions on the two chains. Nevertheless, if the above two
privacy-sensitive information are both hidden, they would
cause SPV authentication to fail and disrupt the atomicity of
the cross-chain interaction.

Based on the above analysis, we design a privacy-
preserving cross-chain transfer protocol ® (shown in Fig-
ure 2) to address the privacy concerns arising from the re-
ceiver’s address and the transfer amount. We choose to hide
the receiver’s address via zk-SNARK but conceal the transfer
amount by setting a fixed denomination [12, 16,29]. For ex-
ample, on an Ethereum chain, if the basic denomination is set
to 2 Ether when S intends to transfer 6 Ether to &, S needs to
make separate transfers of 3 2-Ether transfers. Such a design
makes use of more transactions to protect the privacy of the
transfer value. The whole protocol ® is presented as follows.

©.Burn : ! Mer. path ©.Mint :
Te, BIR--. sn, vg, rootgym

L YEa— —— 0 |
= h(pkgu, r, sn) D%Sﬁ] Vs ‘;L

 Account S! Contract ¢! Contract ¢! Account R"
ﬁ ©. Transmit :
< r,sn, hgym, rootgym ‘.'!
Entity S Entity R

Figure 2: Process of the cross-chain transfer protocol ®. The
blue block depicts the hash digest of the transaction Txgyn
and the red block represents the Merkle proof information,
i.e.,hgurm and rootgym.

Assume that §' in Chain | sends amount v to R" in
Chain Il, where v is a standard value. The entire protocol
consists of four steps: Burn, Transmit, Mint, and Redeem.
Note that in a cross-chain transfer, the Mint and Redeem
steps can only have one of them executed. If Mint is executed,
it signifies a successful transfer; if Redeem is executed, it
means the transferred amount has been returned to the sender.
®.Burn. In this step, S I sends the transaction Txgyr, to the
smart contract &' (or a dedicated burn-account) to burn v. The
transaction Txg,., contains the transfer amount v, and the

hash digest h (pkKu ,r,sn) calculated by hashing the receiver’s

public key EER” , and two random numbers r and sn. Using
both r and sn in a hash function implementation can enhance
the randomness of the hash result, hiding the receiver informa-
tion ERRII and preventing brute force attacks [19]. Note that r
and sn can be generated by utilizing a Pseudo-Random Func-
tion (PRF) [20]. Also, note that sn serves as a unique identi-
fier (like the serial number in currency) for each cross-chain
transfer activity. Once v is claimed, the corresponding sn
is publicly revealed to prevent double-spending attacks [42].
The smart contract ensures the legality of Txgym, locks the
asset v after verifying the correctness of the sender’s signa-
ture and whether or not the account balance is sufficient, and
then sets a time lock Ts.

Txgum = (From: $;To: &;VS,h(EIZR,r,sn)).

The above design ensures that an adversary can only get that
a node sent the transaction Txg,m, Without knowledge of its
receiver.

O.Transmit. After reaching consensus, the hash digest of the
transaction Txg,,, would be included as a leaf node in a block
of Chain |. For simplicity, we omit non-essential data, such as
the Nonce and block number, when describing the transaction
hash. The hash digest of Txg,n is defined as:

h(Txgurm) def hash(E)\RS,addrg,v_g, h(EER, r,sn)).

Through off-chain communication, .§ sends to & the follow-
ing parameters: random number r, random serial number sn,

and the Merkle proof of Txg,m, consisting of a set of hashes,
denoted by hgn, that includes the Merkle root rootg,, and
the Merkle path of Txgym.

Figure 3: The circuit logic diagram for the privacy-preserving
cross-chain transfer protocol. The parameters with a gray
background are private ones protected with zk-SNARK.

®.Mint. After the off-chain communication, ?{” selects a
security parameter and constructs a new circuit Ag (shown
in Figure 3). The entire circuit includes two types of func-
tions (represented by dashed boxes): Hash and MP, where
Hash is used to calculate the hash value of the input data,
while MP implements the Merkle proof functionality to prove
that a transaction exists in a block. R'" employs the algo-
rithm IT.Setup (introduced in Section 4.2) to get the key pair
(pkg,Vvke). Then, it adopts the algorithm IT.Prove to gener-

ate a proof Tg, with the public inputs (EE']{” , SN, Vg, rootgyem)
and the private inputs (E)\E gl addra , t, hgum). Note that in this

transaction, EEKH is public as the transaction is sent from R"
to &' Next, R packages me with the public inputs into the
transaction TXxpmint, and sends it to the smart contract &” (ora
dedicated mint-account) to acquire the assets of equal value
to v. Finally, the smart contract &' verifies the validity of g
through algorithm IT.Verify and sends the asset to R .

TXMint def (From: R;To: &;n,&x,sn,v, rootgurm)-

@.Redeem. If R fails to complete the step ®.Mint before
T3, S' can request to redeem v from the smart contract &', §'
needs to create a proof as Zi” does in step ©.Mint, with the
only difference being that pk g1 and pkg i must be changed to
public and private inputs, respectively, in the circuit design.
Upon completion of the proof, §' sends Txredeem to &' and
receives v after a successful validation.

def -
TxRedeem = (From : $;To: &; 7, pk,sn, v, rootgyrm).

5.2.2 An Cross-chain Exchange Protocol with Privacy
Preservation

We employ HTLC to develop an exchange protocol. Accord-
ing to the definition of HTLC in Section 4.3, it is evident that
because HTLC.Unlock requires both parties in cross-chain in-
teractions to use the same preimage to unlock the exchanged

assets, attackers can easily identify the correlation between
the two parties. Therefore our design challenge for privacy
protection is to obscure the preimage while ensuring the atom-
icity of the HTLC protocol. Note that we also need to protect
the privacy of the exchanged values. For this purpose, we take
the same idea as that for the cross-chain transfer by setting the
fundamental denominations to eliminate the risk of exposing
privacy through exchanged amounts.

To address the privacy challenges posed by the preimage in
HTLC, we develop a privacy-preserving protocol ® based on
zk-SNARK (introduced in Section 4.2). The protocol consists
of four steps: Prepare, Lock, Unlock, and Refund. Accord-
ing to the requirement of HTLC (shown in Section 4.3), ®
necessitates the existence of accounts for § and X on both
Chain I (i.e., S', ') and Chain Il (i.e., S", ®""). Note that in
a cross-chain exchange, only one of the Unlock and Refund
steps can be executed. The execution of Unlock indicates a
successful exchange, while the execution of Refund implies
that the exchanged amount has been returned to the sender.

‘h(prel’snl)Hh(preII, an)‘ snll
Hash | el ! XOR
i S I

Figure 4: The circuit logic diagram used for ®.Prepare. The
parameters with a gray background are private ones protected
with zk-SNARK.

®.Prepare. During this process, S is required to generate a
security parameter and then employs it, along with a circuit
A illustrated in Figure 4, to derive the key pair (pk§, vkg)
based on the setup algorithm IT.Setup. The circuit Agff com-
prises of two functions (indicated by dashed lines), namely
a hash function denoted as Hash and an exclusive OR opera-
tion denoted as XOR. Specifically, § generates two preimages
(pre' and pre'"), two random serial number (sn' and sn"), and
a 256-bit integer Zos56, where sn' and Zps6 are combined with
XOR to derive sn''. These random serial numbers are kept
as private inputs, while preimages and Zys6 are used as pub-
lic inputs. Making use of the Hash function, h(pre',sn') and
h(pre'';sn'") are calculated by taking (pre!, sn'), and (pre'',
sn') as inputs, respectively. Then, by employing the pro-
tocol I1.Prove, S generates a proof ngf. The proof along
with the public inputs, such as the hash results (h(pre'7sn'),
h(pre';sn')), preimages (pre', pre''), and the integer Z,s6, are
sent to R by S through off-chain communications. This off-
chain process can achieve the following goals: first, it allows
S to prove the relationship between sn' and sn'' without dis-
closing sn'; second, it enables R to easily derive sn! from sn'!
through a reverse operation.

®.Lock. After off-chain communications, based on Tx| gck,

S" uses h(pre!,sn') to lock the asset v in the smart contract
E'. After R verifies the correctness of Tx(ock sent by S', R
sends Txock with h(pre'',sn'") to lock the amount vg in the
smart contract &', The time lock operation involved is con-
sistent with the step HTLC.Lock (introduced in Section 4.3),
where both parties set time locks T; and T, on smart con-
tracts, with T; > T».

TXLock def (From : §/R;To: &;v,h(pre,sn,v)).

After reaching consensus, Tx(ok Would be included as a leaf
node in a block and the hash digest of Tx| ok is defined as:

h(TXLock) def hash(ER, addre, v, h(pre,sn)).

®.Unlock. Within T, S" first generates a circuit Ag' that has
similar logic to Ag (shown in Figure 3) but requires modifying
its inputs (shown in Figure 5). Specifically, the public inputs
include the serial number sn'', the amount vg , and the Merkle
root root,_ock The private inputs consist of the &®'"’s public

key pkKu the address of the smart contract addrn, the preim-

age preII the Merkle proof of Tx o (denoted by h,_ock) the
transaction hash h""(Tx o), and the hash lock h(pre!! sn'").
Similar to ®.Mint, S'" generates a proof 7!}, based on the
above circuit. Then, S" sends 7} along with the public inputs
to the smart contract &” through Txyplock to unlock vg . After
that, ®" learns sn" and uses the XOR operation with Zse
to obtain sn'. Following the same steps as S'', ®' generates
a proof T}y, with public inputs (sn', vg, root|) and private
inputs (E)Vk5|, addra, pre!, hI_ock, h'(TxLock), h(pre',sn')), then
sends TXyniock tO get vs.

- h(TXLock)

hiock pk

Figure 5: The circuit logic diagram used for ®.Unlock. The
parameters with a gray background are private ones protected
with zk-SNARK.

def
TXUnlock = (From: S/R;To: &;m, sn, Vv, root ock)-

&.Refund. As in HTLC.Refund (introduced in Section 4.3),
if $" fails to send Txyniock Within To, R would be unable to
calculate sn'. Therefore, the smart contracts on both chains
would return the locked assets after the timeout.

For the convenience of the readers’ understanding, we sum-
marize the process of the exchange between S and X using
protocol @ in Figure 6.

Contract ¢! Contract 5"
&. Lock : &$. Unlock : <I> Unlock

(s
vg, h(pre',sn') sn', root o, Vs 1r‘I, sn'! root,_ock vR

o/%@ P ZARN

VR, h(pre sn)

Accou‘nt s! Account R' Account st Account R"
P‘, ®. Prepare : P
o T4 Zase, h(pre', sn'), h(pre", sn™), pre', pre't .'L
Entity S Entity R

Figure 6: Process of the cross-chain exchange based on proto-
col .

5.2.3 Discussion

When contingencies are in place for parties not following the
protocols (® or ®) explicitly, the protocol also guarantees the
correctness of the amount settlement.

The protocol ® ensures that the interaction results in either
R receiving v or § revoking vg. Specifically, after .§ com-
pletes ®.Burn, if § fails to execute ®.Transmit, & cannot
perform ®.Mint. To prevent the deadlock of the amount v,
S can execute ®.Redeem to reclaim v after a timeout if &
does not execute ®.Mint.

The protocol @ ensures that the interaction results in both
S and R receiving each other’s funds or both parties refund-
ing their respective funds. In ®.Lock, if party § executes the
lock operation but party X does not, .S would reject execut-
ing ®.Unlock and sn'' remain undisclosed. In this case, R
cannot calculate sn' and thus cannot execute ®.Unlock. Con-
sequently, during ®.Refund, both parties would refund their
respective funds. Once S executes ®.Unlock, & can receive
sn'' and calculate sn' to complete the unlock operation. In this
case, both parties can obtain the amount of the other party.

5.3 Cross-chain Auditing Protocol

To solve the FAI issue, we develop an auditing protocol W,
which enhances the efficiency of cross-chain auditing. More-
over, ¥ can be compatible with privacy protection protocols
(introduced in Section 5.2), thereby addressing the IPA prob-
lem.

In our scheme, the purpose of auditing is to check whether
transactions within blocks of the lower-layer blockchain meet
the auditing requirements established by the auditors. Depend-
ing on specific requirements, auditing tasks can be categorized
into basic tasks or complex tasks. The former involves audit-
ing individual transactions, while the latter involves auditing
multiple transactions collectively. zkCross can be used for
both types of auditing tasks: basic tasks, such as verifying the
legitimacy of transaction amounts and addresses, and com-
plex tasks, such as confirming the legitimacy of total amounts
sent by each node over a specified time period. The core of
the protocol ¥ lies in a newly proposed circuit (shown in
Figure 8) that simultaneously considers transaction auditing

and aggregation. The aggregation process is implemented
in an approach that is similar to zk-Rollup (introduced in
Section 4.2), except that our solution can further reduce the
on-chain storage cost and hide the transaction content. The
original intention of zk-Rollup is to handle off-chain trans-
actions that have not undergone consensus. In zkCross, the
focus of the audit is on transactions that have been validated
by consensus in the lower-layer blockchains. As a result, in
certain auditing tasks, there is no need to disclose transaction
amounts and the associated addresses, as done in zk-Rollup,
to prevent malicious tampering of the off-chain transactions.

— Audit | __, Audit | __, Audit | __,
chain chain chain
ﬁ ﬁ state root 2 ﬁ state root 3
proof 1T,v prnof 11“,
Block I-1 [txo) ||Block I-2
- state root 1 state root 2

Figure 7: An example interaction between the audit chain and
Chain | based on the cross-chain auditing protocol.

To aid in comprehension, we expound on the details of pro-
tocol W through the example depicted in Figure 7. This exam-
ple displays three blocks (identified as Block I-1-Block I-3)
of Chain |, and the states of Chain | are denoted as a—e in
the first block. Whenever miners create a new block, such
as Block I-2 that contains a transaction txg, which modifies
the account state from e to €/, the corresponding state root
changes from root 1 to root 2. The majority of blockchain
systems involve many transactions and alterations in the states
of multiple accounts, such as the transition from Block I-2
to Block I-3. Upon discovering a new block, the committer
updates the new state root of Chain I, i.e., state root 3, on the
audit chain. Simultaneously, to demonstrate the correctness
of the state transition to the auditors, the committer generates
a zero-knowledge proof, such as the proof 75‘311 shown in Fig-
ure 7. The entire process of protocol ¥ can be divided into
three steps: Initialize, Commit, and Audit.

W.Initialize. To initiate the protocol ¥ based on algorithm
I1.Setup, the committer Cr is required to generate a security
parameter, denoted as 1, and subsequently utilizes 1* along
with a circuit Ay illustrated in Figure 8 to derive the key pair
(pky, vky). One can observe that circuit Ay consists of four
functions (indicated by dashed lines), i.e., the Auditing Func-
tion AF, the Signature Verification Function SVF, the State
Transition Function STF, and the Root Verification Function
RVF. In this example, the auditing focus is on validating the
legitimacy of the sender’s address within Chain |. Therefore,
AF audits transactions by checking if the address is present

10

in the blacklist, thus completing transaction auditing. SVF
is designed to demonstrate the correctness of the transaction
signatures; STF ensures the correctness of the transition from
the old state State®' to the new state State"" after the trans-
action takes place; and RVF guarantees the consistency of
State®d and State"" with the states recorded in the blocks
of Chain | by recomputing the state root. For example, in
Figure 7, the state of Block I-2 (State® = a,b,c,d,e’) tran-
sitions to the state of Block |-3 (State™" =a’,b’,c’,d’,e")
after n transactions. Note that, one can compress transactions
from multiple blocks and modify the logic of the circuit Ay
according to the auditing task.

Figure 8: The logic diagram of the circuit used for the cross-
chain auditing protocol ¥. The specific values of the param-
eters are derived from the state transition process between
Block I-2 to Block I-3, as illustrated in Figure 7. Private in-
puts are indicated by a gray background.

P.Commit. In this step, the committer Cy requires infor-
mation to set specific private and public inputs for the algo-
rithm IT.Prove. We continue to use Block I-3 as an exam-
ple, as depicted in Figure 7. Specifically, Cr gathers a set of
transactions (tx;—tx,) and sets the account state information
(State®d, State™") wﬂl transaction content (such as transfer
amount v, public key pk, and signature G) as the private input
w, while the public input X includes the initial root (root 2),
and the final state root (root 3). Note that, the blacklist can be
directly written into the circuit as a constant, thereby reduc-
ing the number of circuit inputs. Subsequently, (7 invokes
IT.Prove based on the aforementioned data (X;w) and the
proving key pk generated by W.Initialize to produce the proof
n?I, for the corresponding state transition. Finally, Cy registers
as a light node in the audit chain and packages public inputs
X with 7!:\3}, into a new transaction TXcommit to the audit chain.

TXCommit def (From: Cy;To: &; X,).

W.Audit. After receiving the transaction TXcommit, auditors
would call IT.Verify based on parameters vk, X, and TE?I, to
verify and reach a consensus on the proof. Upon a successful
consensus, the latest uploaded state root (root 3) would be

stored as a leaf in the state tree of the audit chain. Of course,
this step can also be written into the smart contract of the
audit chain to reduce the security risks caused by human
errors. Note that, auditors can collect multiple proofs for
verification and auditing, enabling them to conduct certain
complex auditing tasks, such as auditing the total amount of
transactions sent by a node across multiple blocks.

6 Security Analysis

In this section, we analyze that zkCross can achieve the goals
of privacy and efficiency (as outlined in Section 4.1).

Lemma 1 (Properties of zk-SNARK [13,15]). zk-SNARK has
the property of succinctness, where the complexity of verifying
a proof remains constant at O(1) regardless of the complexity
of the proving process. Moreover, the proof size remains fixed.
Additionally, zk-SNARK is a non-interactive zero-knowledge
proof technique that satisfies completeness, soundness, and
zero-knowledge requirements.

Theorem 1 (Unlinkability). A sender S interacts with a re-
ceiver R_via protocol ® or ®. Given the assurance of secu-
rity offered by the collision-resistant hash function and the
zero-knowledge proof system, within an anonymity set, the
adversary cannot link R_based on the information initiated
by S, nor vice versa.

Proof. zkCross considers all factors that may compromise
the unlinkability, including receiver addresses, preimages,
and transaction amounts. Specifically, each transaction in
blockchains records the addresses of both sender and receiver,
providing adversaries with information to link both parties.
Additionally, in HTLCs, both parties use the same preim-
age to generate hash locks, facilitating adversaries in linking
their accounts. Moreover, the variation in the amount of each
transaction allows adversaries to link the accounts of both
sender and receiver with the same state changes. Within an
anonymity set, we use the following experiment to define the
unlinkability: Given two transactions sent by .S, one (denoted
as tx) to R, and the other (denoted as tx’) to R/, the adversary
A4 is guessing whether the transaction tx or tx’ is sent for &.
Note that tx and tx’ are two transactions of the same type, for
example, both are Txg,,. The probability of A’s success is
defined as Pr[Expgl?zlféffs'ls'ty (A) = 1], where A is the security
parameter. zkCross satisfies the unlinkability if, for all adver-
saries, it holds that \Pr[Expgl?Z'féf:S'!ty(k) =1]— 1| < negl().

We denote U as an anonymity set consisting of the re-
ceivers whose states change during a period, among whom
the actual receiver of a transaction is concealed. The size of
an anonymity set is denoted as |U|. If adversaries know a
sender’s address and intend to compromise unlinkability, they
must link it to the corresponding receiver’s address from an
anonymity set U. If |U]| is 1, there is only one active pair of
S and R . Therefore, concealing the relation between S and

11

R is impossible in our context through the utilization of any
privacy-preserving solutions [8, 12,26,27,29]. Therefore, in
the following context, we only consider an anonymity set U
with |U| > 1, zkCross employs methods such as hiding re-
ceiver addresses, utilizing independent preimages, and adding
transactions with same amounts, thereby guaranteeing that
the probability of adversaries compromising unlinkability is
negligible.

[Hide receiver address] zkCross employs hashing and
zk-SNARK to hide the receiver’s address. .

Specifically, in @.Burn, zkCross employs h(pkg ,r,sn) to

hide the receiver’s address EIZR. To obtain pkg , an adversary
must get sn and r, where sn is revealed at the end of the
protocol, and r is a private input protected by the zk-SNARK.
According to Lemma [, zk-SNARK has the property of zero-
knowledge, meaning that the probability of 4 can derive the
private input r is negligible. Moreover, due to the security of
the hash function, the probability that A obtains EER from
h(B\ER, r,sn) without knowing r is negligible. During ®.Mint,
R " takes pkg as the private input for the zk-SNARK to hide
S"s address. Similarly, in ®.Redeem, S! takes pkK as the
private input to hide ®'"’s address, which indicates that 4
should break the zero-knowledge property of the zk-SNARK
and this probability is negligible.

During cross-chain exchanges, the protocol ® adopts
HTLC, which does not involve interaction between §' and R”.
HTLC involves only the transfer of funds between accounts
within the same chain, such as between S' and K', or between
S" and R". & first adopts a similar approach to the proto-
col O in hiding the receiver’s address, preventing adversaries
from linking the addresses of both interacting parties within
the same chain (such as §' and R). Moreover, since the ac-
counts of the same entity on different chains are independent,
adversaries cannot link between §' and $", or between R/
and R". Similar to the analysis for protocol @, based on the
security of zk-SNARKSs and hash functions, the probability of
A deducing the receiver address is negligible. Based on the
above design, in Exp} et () = 1, the probability of the
adversary A4 linking § and & based on the receiver address is
1 +negl(A).

[Use independent preimages] In HTLCs, when § interacts
with &, this interaction involves two same hash locks gener-
ated by a preimage. 4 can link S and & based on the same
hash locks. The interacting parties in zkCross use indepen-
dent preimages to generate hash locks and adopt zk-SNARK
to ensure the correctness of preimages.

Specifically, in step ®.Lock, ' and R use independent
hash locks to lock the exchange amounts. However, using
independent preimages may compromise the security of the
protocol, for example, R cannot verify whether the preim-
age provided by S is correct. The design challenge lies in
the entity § needing to convince X of the correctness of the
hash lock and ensuring that &' executes the unlock operation

only after S has executed the unlock operation. To solve the
above challenge, we design a novel circuit shown in Figure 4.
Based on this circuit, .§ can generate a proof to convince K.
of the correctness of the hash lock, thereby eliminating the
assumption that both parties need to share the same secret [6].
Since the unlocking information sn is hidden, &' can only
execute the unlock operation after ' has executed the unlock
operation (reveal sn). Based on the above design, given two
hash locks generated by two independent preimages, the prob-
ability that the adversary breaks the collision resistance of the
hash function to link two hash locks is negligible. Therefore,

in Expg?zlt‘gffsi';ty(x) = 1, the probability that the adversary

links § and R based on preimages is % + negl(A).

[Add transactions with same amounts] We establish fun-
damental denominations to divide a transfer amount into mul-
tiple sub-amounts, thereby increasing the number of trans-
actions with the same amounts within the network. Similar
to works [12, 16, 29], the sub-amount is a fixed value that
can be set according to specific scenarios. The above design
means that one can always find two transactions with the same
amount from the network, ensuring that [U] > 1.

Based on the above analysis, one can conclude that in the
experiment Expz?zlwgf:;l'ty(k) = 1, the probability that an ad-
versary compromises unlinkability, even when collecting all
factors that may compromise unlinkability such as receiver
addresses, preimages, and transaction amounts, is % +negl(A).
Therefore, |Pr[ExpEJq"'Z"|:‘éf:5'!ty(k) =1]— 3| < negl()), indicat-
ing that zkCross satisfies unlinkability.

O

Theorem 2 (Efficiency). In a network consisting of k or-
dinary blockchains, each blockchain has an average block
production rate of m new blocks per second and processes an
average of n transactions per block. zkCross can increase the
audit efficiency by nearly n times.

Proof. We consider two auditing methods: auditors examin-
ing each transaction individually (referred to as the full audit-
ing method) with an average audit time of t; per transaction,
or relying on protocol W for auditing with an average verifi-
cation time of t, per proof. Based on Lemma 1, zk-SNARK
exhibits succinctness, ensuring that t; and t, remain con-
stant at O(1). The first approach would require t; X k x m x n
to audit the entire network, while the second one would de-
mand ty X k X m. The ratio between the two methods is tlt%
Notably, as the number of transactions processed within a
block increases linearly, the time growth of verifying proofs
in the W.Audit step remains constant. Consequently, zkCross
is nearly n times faster in audit time compared to the full
auditing scheme for the same task. O

12

7 Performance Evaluation

In this section, we implement zkCross systems with both local
and cloud servers and conduct comprehensive tests to evaluate
the performance of the three protocols in terms of run time,
latency, throughput, gas consumption, audit time, and proof
size. Our code repository is open-sourced on Github'.

7.1 Implementation

zkCross has three protocols, i.e., the two privacy-preserving
cross-chain protocols (®, @) and the cross-chain auditing
protocol W, with each including two critical components: the
off-chain zk-SNARK and the on-chain transaction. For the
off-chain zk-SNARK, we use xjsnark” to obtain the circuits
in each protocol, which are implemented with 1,500+ lines
of code. Then, we utilize the Groth16 algorithm [13] to real-
ize the Setup (initialization), Prove (generation), and Verify
(verification) of zk-SNARK. The Groth16 algorithm is well-
known and has been established as a reliable paradigm in
blockchain [14]. For the on-chain component, each node runs
go-ethereum’ (an official implementation of the Ethereum
protocol using Golang) to build the blockchain, and we em-
ploy Solidity* to write smart contracts and implement the
transactions with 500+ lines of Solidity. To address the lim-
itation of go-ethereum and Solidity of not supporting the
verification of zk-SNARK, we make modifications to the
source code of go-ethereum and Solidity, adding a function
to smart contracts for proof verification, and setting the gas
required to invoke this function at 440,000 gas (equivalent to
Groth16 [36]).

We test the performance of zkCross on both local and
cloud servers. The local servers are equipped with an Intel®
Xeon(R) Silver 4214R CPU @ 2.40 GHz * 48 and 98.3 GB
RAM running 64-bit Ubuntu 20.04.2 LTS. As for the exper-
iment on cloud servers, we use 50 ecs.g6.3xlarge instances,
with each running the Ubuntu 20.04 system Intel Xeon (Cas-
cade Lake) Platinum 8269CY processor and having 12 vCPUs
of frequency 3.2 GHz and 48 GB RAM. We start 4 docker
nodes in each instance to form multiple blockchains based on
the Proof-of-Work consensus algorithm, and the number of
transactions at each blockchain reaches up to 10,000. More de-
tails of the setup of each experiment will be presented before
reporting the performance evaluation results.

7.2 Experimental Results
7.2.1 Cross-Chain Transfer and Exchange

We build two blockchains on cloud servers, varying the num-
ber of nodes and transactions in each blockchain based on the

Uhttps://github.com/Anonymous- Authors-zkCross/zkCross
Zhttps://github.com/akosba/xjsnark
3https://github.com/ethereum/go-ethereum
“https://github.com/ethereum/solidity

test requirements.

We first test the performance of zk-SNARK, including the
time consumption in three steps: Setup, Prove, and Verify.
The performance of zk-SNARK varies based on the circuit
used. In protocols ® and P, there are a total of three circuits.
Circuit Ag (as depicted in Figure 3) is used for protocol O,
while circuits Ag' (as depicted in Figure 4) and AJ (as de-
picted in Figure 5) are used for protocol ®. The size of Ag
and Ag' is related to the inputs of the MP function, which
corresponds to the number of transactions included within
a given block, i.e., the block size. For instance, a block con-
taining 16 transactions (block size = 16) can construct a full
binary tree with a height of 4, requiring MP to consist of 4
hash values with corresponding 4 hash operations.

=
o

40| EEE Setup [Verify 40| W Setup [Verify

=30 I Prove 8 7 =30 I Prove 8 m

) 6 E L 6 £

[} o @ b

£20 , ¢ £20 v

£ e £ 4 £

F c F F
10 2 10 2
016 32 64 128 256 ° 016 32 64 128 256 °

The block size The block size

(@ (b)

Figure 9: Run time for the initialization (Setup), generation
(Prove), and verification (Verify) of proofs with different block
sizes. Left: Ag; right: Ag.

In Figure 9, we test the time consumption of zk-SNARK
related to circuits Ag and Ag', and change the block size from
16 to 256. As the block size increases, the time consumption
of Setup and Prove increases linearly, while Verify remains
nearly unchanged. While Setup and Prove take more time
when compared to the millisecond-level Verify, they do not
require additional on-chain resources as they run off-chain.
Table | shows the average time consumption of Setup, Prove,
and Verify related to A3, with values of 6.96 seconds, 1.91
seconds, and 5.16 milliseconds, respectively.

Table 1: Run time of the three steps based on A:?Iff.

Setup (s)
6.96

Prove (s)
1.91

Verify (ms)
5.16

Then, we test the latency of transactions and system
throughput at different node scales. The protocol ® en-
compasses transactions Txgym and TXmint, and TXRedeem
(TXRedeem €xhibiting the same performance as Txpnt), While
the protocol @ integrates transactions Txpock and TXynjock-
Note that the transaction delay refers to the duration between
the time a transaction is sent to the blockchain and the time
it is confirmed by miners. The unit utilized to measure the
throughput is TPS, which refers to the number of transactions
a scheme can process per second. For more accurate tests, we
establish two blockchains and vary the number of on-chain

13

nodes to simulate cross-chain environments. As shown in Fig-
ures 10, the maximum number of nodes for each blockchain
is 100. The number of transactions in the network is related
to the number of nodes, that is, the more nodes, the more
transactions in the network. We stipulate that the number of
transactions is equal to 10 times that of the nodes, i.e., there
are 1,000 pending transactions in a network of 100 nodes.

o]

~@— TXgumn
- @ TXwmint Y

Time (s)
TPS (Tx/s)

0-20 40 60 80
The number of nodes

(d)

20 40 60 80
The number of nodes

()

100 100

[«

B TXpock
3 TXunlock

- TXrock
- @ TXunlock

Time (s)
TPS (Tx/s)

100 0-20 40 60 80
The number of nodes

20 40 60 80
The number of nodes

100

(©) (d)

Figure 10: Network latency (left) and throughput (right) of the
cross-chain transfer protocol ® (top) and exchange protocol
& (bottom).

Specifically, Figures 10 ((a), (b)) and ((c), (d)) respectively
show the performance of protocols ® and ®. As the num-
ber of nodes in the network increases, the latency of the four
types of transactions slightly increases, leading to a slight de-
crease in the corresponding network throughput. When there
are 100 nodes in the network, the delay of the transaction
Txgurn 18 about 5.50 seconds, and that of transaction TXpint
is approximately 6.14 seconds in protocol ®, as demonstrated
in Figure 10 (a). The corresponding network throughput for
Txgurn and Txmint are 45.78 and 32.58, respectively, as shown
in Figure 10 (b). In protocol ® (shown in Figures 10 (c), (d)),
the transaction Txock takes around 5.44 seconds to complete,
while the transaction Txynjock takes around 6.21 seconds. The
corresponding network TPS values for Tx|ocx and Txynlock
are 48.38 and 32.55, respectively. The increasing number of
nodes and transactions is responsible for this trend because
the communication time between the nodes and the number
of transactions waiting in the queue simultaneously increase,
leading to longer transaction delays and decreased network
throughput. To mitigate this problem, it is recommended to
implement layer-2 scaling solutions [15] to lower the transac-
tion delay and enhance the system throughput.

Finally, we simulate the gas consumption of each protocol
in two 20-node blockchains. As shown in Table 2, the protocol

Table 2: Gas consumption of each protocol.

Protocol Gas ETH USD*
[C) 494,000 0.000494 1.72
[901,472 0.000901 3.13

* Gasprice = 1 Gwei, 1 Ether = 10° Gwei, and 1 Ether = 3,470.71 USD.

® consumes 494,000 gas (equivalent to around 1.72 dollars),
while the protocol ® requires 901,472 gas (about 3.13 dollars).
The gas consumption of ® is mainly due to proof verification,
whereas the gas consumption @ mainly arises from the proof
verification and multiple interactions with smart contracts.

7.2.2 Cross-Chain Auditing

In this experiment, we build a 20-node audit chain, to audit
whether whether all senders of transactions are included in
the blacklist of the audit chain. The experimental results are
reported in Figures 11 (a), (b). Specifically, in Figure 11 (a),

10>

140| —®— proof size 40 —@— audit without ¥
’g T o~ --@- audit with ¥
120 O [PE 210
<) --@- Verify o GEJ
g 20E =
& 100 U Sy °® F Tin T

o 10 o~
8055 100 150 200 250 100 500 1000 1500 10000

The number of transactions

(b)

The number of transactions

(a)

Figure 11: The proof size, proof verification time (left), and
audit time (right) of the cross-chain auditing protocol ¥ vary
with the number of transactions.

we initially evaluate the impact of the number of aggregated
transactions within circuit Ay (shown in Figure 8) on both
the audit time and the size of a proof. We vary the number of
transactions from 50 to 250 and observe an increase in the
time required for auditing (proof verification) from 8.52 mil-
liseconds to 16.43 milliseconds, while the proof size remains
127.38 bytes. One can see that, owing to the succinctness
of zk-SNARK, the growing number of transactions aggre-
gated within a single proof leads to only a slight increase in
verification time, with no change in the size of the proof.
Subsequently, in Figure 11 (b), we conduct a comparative
experiment on the audit efficiency with protocol ¥ and full
auditing without W. We vary the transaction quantity in the
range of 100 to 10,000, which corresponds to the number of
ordinary chains ranging from 1 to 100, each being assigned to
processing 100 transactions. One can see that the audit time
without ¥ is about 35.66 seconds, while with W, it is only
1.10 seconds. However, when the number of transactions is
increased to 10,000, the network congestion among the 20
nodes causes the audit time to be around 3.15 hours without
Y. In contrast, with ¥, the audit time is decreased to about

14

40 seconds under the same condition, which demonstrates a
significant improvement in efficiency.

Table 3: Gas consumption of the protocol V.

Protocol Gas ETH USD*
¥ 466,520 0.000467 1.62

* Gasprice = 1 Gwei, 1 Ether = 10° Gwei, and 1 Ether = 3,470.71 USD.

Then, based on the experimental setup of gas outlined in
Section 7.2.1, we conduct tests to determine the gas consump-
tion required for the auditing protocol ¥, where each proof
contains 50 transactions. As shown in Table 3, the gas re-
quired for executing W is 466,520. Note that, as mentioned in
Section 5.3, proof verification can be implemented without
the use of smart contracts, thus reducing gas consumption.

Table 4: Storage cost of zk-Rollup and our scheme.

Solution Constraints | Pubic inputs (KB) Veri. key (KB)
zk-Rollup 11,466,073 10.21 12.20
Our work 11,763,593 6.83 0.24

Finally, we simulate the storage cost of zk-Rollup (intro-
duced in Section 4.2) and our protocol ¥, with both circuits
containing 100 transactions. As shown in Table 4, ¥ adds
circuit constraints but reduces the size of data, i.e., public
inputs and verification keys, to be uploaded to the audit chain,
thereby reducing the storage cost for auditors. Based on
Ethereum’s storage cost, storing 256 bits of data costs 20,000
units of gas [5]. Therefore, verifying 100 transactions can
conserve approximately 16 KB of space and save about 10
million units of gas. This saving is significant for blockchain
networks with billions of transactions.

8 Conclusion

In this paper, we propose zkCross, a cross-chain scheme that
supports privacy protection and efficient auditing. zkCross
employs a novel auditing architecture with three protocols
to address the Cross-chain Linkability Exposure (CLE) prob-
lem, the Incompatibility of Privacy and Auditing (IPA), and
the Full Auditing Inefficiency (FAI) problem. We conduct a
thorough security analysis and carry out comprehensive simu-
lation studies, and our results indicate that zkCross can bring
higher audit efficiency while preserving privacy. In our future
research, we will focus on enhancing the system’s resilience
against attacks while maintaining privacy. Moreover, we will
extend zkCross to support multi-layer (more than 2) audit-
ing, thereby expanding its application scenarios and further
optimizing the audit efficiency.

Acknowledgment

We would like to thank the anonymous USENIX Secu-
rity shepherd and reviewers for their constructive feedback
that helped us improve the paper. This study was partially
supported by the National Key R&D Program of China
(N0.2023YFB2703600), the National Natural Science Foun-
dation of China (N0.62232010, 62302266, U23A20302),
the Shandong Science Fund for Excellent Young Scholars
(No0.2023HWYQ-008), and the Shandong Science Fund for
Key Fundamental Research Project (ZR2022ZD02).

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

Foteini Baldimtsi, Ian Miers, and Xinyuan Zhang.
Anonymous sidechains. In International Workshop on
Data Privacy Management, pages 262-277. Springer,
2021.

Rafael Belchior, André Vasconcelos, Sérgio Guerreiro,
and Miguel Correia. A survey on blockchain interoper-
ability: Past, present, and future trends. ACM Computing
Surveys (CSUR), 54(8):1-41, 2021.

Joseph Bonneau, Arvind Narayanan, Andrew Miller,
Jeremy Clark, Joshua A Kroll, and Edward W Felten.
Mixcoin: Anonymity for bitcoin with accountable mixes.
In Financial Cryptography and Data Security: 18th In-
ternational Conference, FC 2014, Christ Church, Bar-
bados, March 3-7, 2014, Revised Selected Papers 18,
pages 486-504. Springer, 2014.

Sean Bowe, Alessandro Chiesa, Matthew Green, Ian
Miers, Pratyush Mishra, and Howard Wu. Zexe: En-
abling decentralized private computation. In 2020 IEEE
Symposium on Security and Privacy (SP), pages 947—
964. 1IEEE, 2020.

Benedikt Biinz, Shashank Agrawal, Mahdi Zamani, and
Dan Boneh. Zether: Towards privacy in a smart contract
world. In International Conference on Financial Cryp-
tography and Data Security, pages 423-443. Springer,
2020.

Apoorvaa Deshpande and Maurice Herlihy. Privacy-
preserving cross-chain atomic swaps. In Financial Cryp-
tography and Data Security, pages 540-549. Springer,
2020.

Yuefeng Du, Huayi Duan, Anxin Zhou, Cong Wang,
Man Ho Au, and Qian Wang. Enabling secure and ef-
ficient decentralized storage auditing with blockchain.
IEEE Transactions on Dependable and Secure Comput-
ing, 19(5):3038-3054, 2021.

15

(8]

[9]

[10]

(1]

(12]

(13]

[14]

[15]

[16]

Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and
Daniel Malinowski. Perun: Virtual payment hubs over
cryptocurrencies. In 2019 IEEE Symposium on Security
and Privacy (SP), pages 106-123. IEEE, 2019.

Christina Garman, Matthew Green, and Ian Miers. Ac-
countable privacy for decentralized anonymous pay-
ments. In Financial Cryptography and Data Security:
20th International Conference, FC 2016, Christ Church,
Barbados, February 22-26, 2016, Revised Selected Pa-
pers 20, pages 81-98. Springer, 2017.

Alberto Garoffolo, Dmytro Kaidalov, and Roman
Oliynykov. Zendoo: A zk-snark verifiable cross-chain
transfer protocol enabling decoupled and decentralized
sidechains. In 2020 IEEE 40th International Confer-
ence on Distributed Computing Systems (ICDCS), pages
1257-1262. IEEE, 2020.

Zhonghui Ge, Jiayuan Gu, Chenke Wang, Yu Long, Xian
Xu, and Dawu Gu. Accio: Variable-amount, optimized-
unlinkable and nizk-free off-chain payments via hubs.
In Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security, pages 1541—
1555, 2023.

Noemi Glaeser, Matteo Maffei, Giulio Malavolta, Pedro
Moreno-Sanchez, Erkan Tairi, and Sri Aravinda Krish-
nan Thyagarajan. Foundations of coin mixing services.
In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, pages 1259—
1273, 2022.

Jens Groth. On the size of pairing-based non-interactive
arguments. In Annual international conference on the
theory and applications of cryptographic techniques,
pages 305-326. Springer, 2016.

Yihao Guo, Zhiguo Wan, Hui Cui, Xiuzhen Cheng,
and Falko Dressler. Vehicloak: A blockchain-enabled
privacy-preserving payment scheme for location-based
vehicular services. IEEE Transactions on Mobile Com-
puting, (01):1-13, 2022.

Yihao Guo, Minghui Xu, Dongxiao Yu, Yong Yu, Rajiv
Ranjan, and Xiuzhen Cheng. Cross-channel: Scalable
off-chain channels supporting fair and atomic cross-
chain operations. IEEE Transactions on Computers,
pages 1-14, 2023.

Ethan Heilman, Leen Alshenibr, Foteini Baldimtsi,
Alessandra Scafuro, and Sharon Goldberg. Tumblebit:
An untrusted bitcoin-compatible anonymous payment
hub. In Network and distributed system security sympo-
sium, 2017.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Jun Wook Heo, Gowri Sankar Ramachandran, Ali Dorri,
and Raja Jurdak. Blockchain data storage optimisations:
A comprehensive survey. ACM Computing Surveys,
2024.

Maurice Herlihy. Atomic cross-chain swaps. In Pro-
ceedings of the 2018 ACM symposium on principles of
distributed computing, pages 245-254, 2018.

Gershon Kedem and Yuriko Ishihara. Brute force attack
on {UNIX} passwords with {SIMD} computer. In 8th
USENIX Security Symposium (USENIX Security 99),
1999.

Peter Kietzmann, Thomas C Schmidt, and Matthias
Wihlisch. A guideline on pseudorandom number gener-
ation (prng) in the iot. ACM Computing Surveys (CSUR),
54(6):1-38, 2021.

Yuxian Li, Jian Weng, Ming Li, Wei Wu, Jiasi Weng,
Jia-Nan Liu, and Shun Hu. Zerocross: A sidechain-
based privacy-preserving cross-chain solution for mon-
ero. Journal of Parallel and Distributed Computing,
169:301-316, 2022.

Manlu Liu, Kean Wu, and Jennifer Jie Xu. How will
blockchain technology impact auditing and accounting:
Permissionless versus permissioned blockchain. Cur-
rent Issues in auditing, 13(2):A19-A29, 2019.

Sinisa Matetic, Karl Wiist, Moritz Schneider, Kari Kos-
tiainen, Ghassan Karame, and Srdjan Capkun. {BITE}:
Bitcoin lightweight client privacy using trusted execu-
tion. In 28th USENIX Security Symposium (USENIX
Security 19), pages 783-800, 2019.

Andreas Pfitzmann and Marit Hansen. Anonymity,
unlinkability, undetectability, unobservability,
pseudonymity, and identity management-a con-
solidated proposal for terminology. Version v0, 31:15,
2008.

Babu Pillai, Kamanashis Biswas, Zhé Héu, and Vallipu-
ram Muthukkumarasamy. Burn-to-claim: An asset trans-
fer protocol for blockchain interoperability. Computer
Networks, 200:108495, 2021.

Xianrui Qin, Shimin Pan, Arash Mirzaei, Zhimei Sui,
Oguzhan Ersoy, Amin Sakzad, Muhammed F Esgin,
Joseph K Liu, Jiangshan Yu, and Tsz Hon Yuen. Blind-
hub: Bitcoin-compatible privacy-preserving payment
channel hubs supporting variable amounts. In 2023
IEEE Symposium on Security and Privacy (SP), pages
2462-2480. IEEE, 2023.

Eli Ben Sasson, Alessandro Chiesa, Christina Garman,
Matthew Green, Ian Miers, Eran Tromer, and Madars
Virza. Zerocash: Decentralized anonymous payments

16

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

(37]

from bitcoin. In 2014 IEEE symposium on security and
privacy, pages 459-474. IEEE, 2014.

Amritraj Singh, Kelly Click, Reza M Parizi, Qi Zhang,
Ali Dehghantanha, and Kim-Kwang Raymond Choo.
Sidechain technologies in blockchain networks: An ex-
amination and state-of-the-art review. Journal of Net-
work and Computer Applications, 149:102471, 2020.

Erkan Tairi, Pedro Moreno-Sanchez, and Matteo Maffei.
A?l: Anonymous atomic locks for scalability in payment
channel hubs. In 2021 IEEE Symposium on Security
and Privacy (SP), pages 1834—1851. IEEE, 2021.

Sri AravindaKrishnan Thyagarajan, Giulio Malavolta,
and Pedro Moreno-Sanchez. Universal atomic swaps:
Secure exchange of coins across all blockchains. In
2022 IEEE Symposium on Security and Privacy (SP),
pages 1299-1316. IEEE, 2022.

Itay Tsabary, Matan Yechieli, Alex Manuskin, and Ittay
Eyal. Mad-htlc: because htlc is crazy-cheap to attack.
In 2021 IEEE Symposium on Security and Privacy (SP),
pages 1230-1248. IEEE, 2021.

Florian Tschorsch and Bjorn Scheuermann. Bitcoin
and beyond: A technical survey on decentralized digital
currencies. IEEE Communications Surveys & Tutorials,
18(3):2084-2123, 2016.

Xiaoyi Wang, Weiwei Qiu, Lei Zeng, Hongkai Wang,
Yiyang Yao, and Dong He. A supervisory and gover-
nance mechanism for power master-slave chain archi-
tecture. In 2021 IEEE International Conference on
Electronic Technology, Communication and Information
(ICETCI), pages 172-175. IEEE, 2021.

Jiasi Weng, Jian Weng, Jilian Zhang, Ming Li, Yue
Zhang, and Weiqi Luo. Deepchain: Auditable and
privacy-preserving deep learning with blockchain-based
incentive. IEEFE Transactions on Dependable and Se-
cure Computing, 18(5):2438-2455, 2019.

Gavin Wood. Polkadot: Vision for a heterogeneous
multi-chain framework. White Paper, 21:2327-4662,
2016.

Tiancheng Xie, Jiaheng Zhang, Zerui Cheng, Fan Zhang,
Yupeng Zhang, Yongzheng Jia, Dan Boneh, and Dawn
Song. zkbridge: Trustless cross-chain bridges made
practical. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security,
pages 3003-3017, 2022.

Lei Xu, Ting Bao, and Liehuang Zhu. Blockchain em-
powered differentially private and auditable data pub-
lishing in industrial iot. I[EEE Transactions on Industrial
Informatics, 17(11):7659-7668, 2020.

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Minghui Xu, Yihao Guo, Chunchi Liu, Qin Hu, Dongx-
iao Yu, Zehui Xiong, Dusit Niyato, and Xiuzhen Cheng.
Exploring blockchain technology through a modular
lens: A survey. arXiv preprint arXiv:2304.08283, 2023.

Longyang Yi, Yangyang Sun, Bin Wang, Li Duan,
Hongliang Ma, Bin Wang, Zhen Han, and Wei Wang.
Ccubi: A cross-chain based premium competition
scheme with privacy preservation for usage-based in-
surance. International Journal of Intelligent Systems,
37(12):11522-11546, 2022.

Zeyuan Yin, Bingsheng Zhang, Jingzhong Xu, Kaiyu
Lu, and Kui Ren. Bool network: An open, distributed,
secure cross-chain notary platform. IEEE Transactions
on Information Forensics and Security, 17:3465-3478,
2022.

Alexei Zamyatin, Dominik Harz, Joshua Lind, Panayio-
tis Panayiotou, Arthur Gervais, and William Knottenbelt.
Xclaim: Trustless, interoperable, cryptocurrency-backed
assets. In 2019 IEEE Symposium on Security and Pri-
vacy (SP), pages 193-210. IEEE, 2019.

Shijie Zhang and Jong-Hyouk Lee. Double-spending
with a sybil attack in the bitcoin decentralized net-
work. [EEE transactions on Industrial Informatics,
15(10):5715-5722, 2019.

Xiaoyan Zhang, Jingwei Chen, Yong Zhou, and Shun-
rong Jiang. Privacy-preserving cross-chain payment
scheme for blockchain-enabled energy trading. In 2021
IEEE/CIC International Conference on Communica-
tions in China (ICCC), pages 109-114. IEEE, 2021.

Yushu Zhang, Jiajia Jiang, Xuewen Dong, Liangmin
Wang, and Yong Xiang. Bedcv: Blockchain-enabled
decentralized consistency verification for cross-chain
calculation. IEEE Transactions on Cloud Computing,
2022.

Qingyi Zhu, Seng W Loke, Rolando Trujillo-Rasua,
Frank Jiang, and Yong Xiang. Applications of dis-
tributed ledger technologies to the internet of things:
A survey. ACM computing surveys (CSUR), 52(6):1-34,
2019.

17

	Introduction
	Background
	Blockchain
	Cross-chain Activities

	Related Work and Motivations
	Related Work
	Challenges of Cross-Chain Privacy Protection & Auditing

	The Model and Preliminaries
	Models
	zk-Rollup Based on zk-SNARKs
	Hashed Timelock Contracts
	Simplified Payment Verification

	The zkCross
	Overview
	Privacy-preserving Cross-chain Protocols
	An Cross-chain Transfer Protocol with Privacy Preservation
	An Cross-chain Exchange Protocol with Privacy Preservation
	Discussion

	Cross-chain Auditing Protocol

	Security Analysis
	Performance Evaluation
	Implementation
	Experimental Results
	Cross-Chain Transfer and Exchange
	Cross-Chain Auditing

	Conclusion

