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Abstract—The proliferation of edge computing brings new
challenges due to the complexity of decentralized edge networks.
Software-defined networking (SDN) takes advantage of pro-
grammability and flexibility in handling complicated networks.
However, it remains a problem of designing a both trusted and
scalable SDN control plane, which is the core component of the
SDN architecture for edge computing. In this paper, we propose
Curb, a novel group-based SDN control plane that seamlessly
integrates blockchain and BFT consensus to ensure byzantine
fault tolerance, verifiability, traceability, and scalability within
one framework. Curb supports trusted flow rule updates and
adaptive controller reassignment. Importantly, we leverage a
group-based control plane to realize a scalable network where
the message complexity of each round is upper bounded by
O(N), where N is the number of controllers, to reduce overheads
caused by blockchain consensus. Finally, we conduct extensive
simulations on the classical Internet2 network to validate our
design.

Index Terms—Software-defined network (SDN); edge comput-
ing; scalability; blockchain

I. INTRODUCTION

The success of cloud computing and the proliferation of
Internet of Things (IoT) gives birth to the new concept of edge
computing, in which data processing occurs at the network
edge rather than relies on cloud services. By lowering comput-
ing and storage resources from cloud to edge, end devices can
achieve low communication overheads and high bandwidth in
a decentralized network. To govern such center-free networks,
software-defined networking (SDN) is an appealing technique
enlightened by edge computing users. An integrated layered
architecture of SDN and edge computing is presented in
Fig. 1. SDN decouples the control plane and data plane to
create a more expressive and programmable environment so
that applications can flexibly configure network policies and
realize network automation. SDN can benefit edge computing
especially due to its advantages in data-intensive applications
with massive edge devices.

Adopting a SDN control plane on edge brings about fresh
attack surfaces. In common implementations, developers are
used to adopting one single controller to manipulate multi-
ple switches, which faces security problems and scalability
concerns. A pivot controller, once crashes, can pose threats
to a large area of interconnected edge servers. This problem
becomes even more serious considering that third parties
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Fig. 1. Infrastructure of SDN-enabled edge computing

implementing application service are free to configure net-
work policies on controllers. Besides, a centralized controller
might fail to handle numerous requests generated by edge
devices. Massive edge devices can incur large communication
overheads and maliciously generate contention on the control
plane. To address the above issues, researchers have proposed
viable solutions, which essentially introduce redundant SDN
controllers and gain fault tolerance by assigning each switch
a controller group instead of a single controller. Hence when
a controller becomes faulty, other group members can take
charge to mitigate negative impacts. This fault tolerance can
be achieved by the following approaches: BFT consensus
algorithms [1]–[3], primary-backup control plane [4], [5], or
blockchain techniques [6]–[9].

However, current approaches have limitations in achieving
both security and scalability. On one hand, primary-backup
or pure BFT consensus based methods confront with security
concerns. For example, if a controller is corrupted and should
be replaced with an honest one, how can we guarantee that
the incoming controller is honest? In addition, when controller
operates such as updating flow rules for switches, how can we



ensure that the operation logic is correct and the status after
update is verifiable? Moreover, how to avoid that controllers
create conflicting flow rules or configurations? On the other
hand, introducing BFT consensus or blockchain systems (al-
ways embodied with BFT consensus) arises scalability con-
cerns since a consensus process incurs much communication
overhead due to the need of massive message exchanges, e.g.,
the message complexity of PBFT is O(N2) (O(N3) in the
worst case). Therefore, letting each controller participate into
verifying and achieving consensus on all proposals is not a
proper and efficient way.

In this paper, we intend to answer the following question:
Can we design a both trusted and scalable SDN control
plane for edge computing? Concretely, we aim to advance
existing BFT or blockchain-based control plane by first in-
troducing a permissioned blockchain running BFT consensus
as a subroutine to protect the control plane. Operations (e.g.,
flow table update) should be computed, verified, and agreed
by the honest majority (by BFT consensus) before admitted
by all nodes. Since the blockchain is a fully ordered chain of
blocks, of which all nodes must hold an identical synchronized
view, all participants can reach strong consistency on all valid
operations that have been confirmed. Besides, we propose an
adaptive reassignment approach to timely detect byzantine
nodes and replace them with honest ones. This approach
contributes to both safety and liveness of Curb. And even
more critical is our proposed scalable group-based control
plane. Specifically, we assign each switch a controller group
of size c = 3f + 1 where c is a constant and at most f
can be byzantine. The controller groups might have overlaps,
but the number of groups is O(N) where N is the number
of controllers. We adopt an optimization programming solver
to randomly and deterministically decide the assignment. To
achieve scalability, the blockchain consensus is divided into
two major stages: intra-group consensus and final consensus.
Each group first executes an intra-group consensus to make
internal decisions on transactions, which are further confirmed
through the final consensus manipulated by the final commit-
tee. The message complexity of either intra-group consensus
or the final consensus is O(c2). Hence the message complexity
of the Curb protocol is O(kc2) = O(N), where k is the
number of groups and is asymptotically O(N). The primary
contributions of this paper can be summarized as follows:

1) We propose Curb, a trusted and scalable SDN control
plane on edge layer. Compared to existing approaches,
Curb seamlessly incorporates blockchain and BFT con-
sensus into group-based control plane, achieving byzan-
tine fault tolerance, verifiability, consistency, and scala-
bility within one framework. Extensive simulations are
conducted to demonstrate the salient features of Curb.

2) To realize a scalable SDN control plane, controllers are
organized into multiple groups, each taking charge of
multiple switches and reaching intra-group consensus
in parallel. The message complexity of each round is
reduced to O(N). This method significantly reduces

the communication overhead incurred by blockchain
consensus.

3) Last but not least, Curb provides a blockchain-secured
adaptive reassignment approach for SDN control plane.
So byzantine controllers can be timely detected and then
rapidly replaced with honest ones. The correctness and
security of reassignment are ensured by the blockchain.

The rest of the paper is organized as follows. Related works
are presented in Section II. In Section III, we detail the Curb
protocol. Simulation results are reported in Section IV, and
this paper is concluded in Section V.

II. RELATED WORK

In this section, we present a general overview on secure
SDN for edge computing and a more specific overview on
fault-tolerant SDN control plane.

A. Secure SDN for Edge Computing

Studies in this category concentrate on protecting SDN-
enabled edge computing from various perspectives including
service quality [10], load-balancing flow control [6], [11], de-
vice authentication [8], energy consumption [9], [12], trusted
controller management [7], and information synchronization
[13]. Concretely, Xu et al. [10] provided a secure service
offloading scheme for SDN-enabled Internet of Vehicles (IoV).
Zhang et al. [6] designed a message classification strategy
for blockchain-enabled SDN, in which messages are classified
before being transmitted so as to realize load balancing. Hu et
al. [11] proposed a blockchain-assisted SDN to facilitate traffic
control and flow verification. The authors also established a
reward mechanism for IoT device verification. Tselios et al.
wrote a position paper to discuss attack faces of current SDN
frameworks. It points out the roles that blockchains can play in
safeguarding SDN [8] and especially mentions that operations
of IoT devices can be authenticated based on information
recorded on a blockchain. Yazdinejad et al. [9] developed
an energy-efficient blockchain-enabled SDN architecture to
establish distributed trust among IoT devices. They saved
energy by adopting an efficient routing protocol for clustered
SDN-IoT networks. SmartBlock-SDN [12] presents an energy-
efficient framework to integrate SDN and blockchain tech-
nologies. The framework saves energy by selecting part of
the sensors to transmit messages so that the other sensors
are free from heavy workloads. Gao et al. [7] analyzed the
integration of blockchain, SDN, 5G and edge computing in a
VANET system, in which a blockchain is run on the control
plane for controller management. BEST [13] is a blockchain-
enabled energy trading scheme for intelligent transportation
system. Roadside units (RSUs) maintain a blockchain to record
transactions generated in energy trading, and SDN facilitates
efficient resource distribution and benefits the synchronization
of blockchain databases among decentralized nodes.

Different from the above studies, Curb focuses on safe-
guarding the most important control plane by offering byzan-
tine fault tolerance as well as blockchain-enabled security



features, and organizing a scalable SDN control plane to
reduce the complexity brought by blockchain consensus.

B. Fault-tolerant SDN Control Plane

Next we review the existing studies that focus on the
fault tolerance of SDN control plane. These studies shed
light on implementing a trusted control plane, even though
they are not completely designed for edge computing. The
redundant controller assignment approach was first proposed
by [14]. This approach provides a novel SDN architecture
which assigns each switch with multiple controllers. It also
formulates an NP-hard controller assignment in fault-tolerant
SDN (CAFTS) problem. SimpleBFT and BeaconBFT [1] are
two BFT SDN controllers that respectively integrate Open-
FlowJ and Beacon with the BFT-SMaRt consensus algorithm.
These controllers comprise a quorum of 3f + 1 replicas to
tolerate at most f byzantine controllers. The agreement-and-
execution group-based approach [2] intends to improve the
resource utilization of heterogeneous controllers by dividing
them into fast and slow ones that can work at different
levels of difficulty in the BFT consensus process. MORPH
[4] is a primary-backup based framework designed for the
BFT control plane. It makes use of distributed comparators
to constantly identify erroneous configuration and inconsis-
tent controller states and a centralized reassigner to reassign
controller-switch connections. P4BFT [3] reduces traffic load
of BFT consensus on the control plane through control packet
comparison and deduction, which are executed by P4-enabled
switches. Mohan et al. [5] mapped each switch to f+1 primary
controllers and f back-up ones to defend against byzantine
attacks. The authors also proposed two remapping algorithms
namely MINCON and MINRUS, with the former minimizing
the number of controllers used and the latter additionally
considering the number of changes during remapping.

Compared to the existing fault-tolerant control plane
schemes mentioned above, Curb additionally introduces
blockchain for storing historical information, and provides
a group-based method to alleviate communication overheads
caused by the redundant controller assignment and the com-
plex consensus process.

III. CURB DESIGN

A. Design Goals

The proposed Curb is supposed to accomplish three major
design objectives:

1) BFT control plane: All configurations should be agreed
by the honest majority through a consensus process and
thus the network cannot be maliciously configured or
tampered with by byzantine controllers. Configuration
changes need to be fully and immutably recorded by a
blockchain to guarantee secure flow table maintenance.

2) Scalable network and linear message complexity: The
throughput should linearly increases with the growing
number of switches or hosts. The message complexity
is O(N), where N is the network size.

TABLE I
SUMMARY OF NOTATIONS

Symbol Description
C the set of all controllers
S the set of all switches
Ac agree messages stored by controller c
Fc final-agreed messages stored by controller c
Rs REPLY message set of switch s
TX a transaction

OP() optimization programming solver
ctrLists controller list of switch s
reqMsg a request message
config configuration
pk, sk public and private keys
swList list of all switches
ctrList list of all controllers
txList list of transactions

finalCom final committee member list
LEADER the set of all group leaders
reqBuffer the buffer storing handled requests

blockBuffer the buffer storing received and ordered blocks
PKT-IN packet-in request
RE-ASS reassignment request

3) Byzantine-fault controller detection and update: In the
process of SDN running, the system should be capable
of detecting byzantine controllers according to its behav-
iors, and the byzantine nodes should be efficiently and
timely replaced with honest ones to keep the network
live and safe.

B. System Elements

Host and switch: Hosts (or devices) send packets to switches
(or routers)1. Switches then parse the header fields and match
each packet to a flow rule. In Curb, switches can trans-
fer packet-in/reassignment requests to controllers, maintain a
controller list, and determine which controllers are byzantine
based on their responses. These functionalities can be imple-
mented by setting up a proxy on a switch [1], [4], or adopting
SDN-enabled switches with simple intelligence [5].

Northbound and southbound API: Northbound APIs are
responsible for the communication and orchestration between
application services and the SDN control plane. Users are
allowed to control the network by manipulating controllers
through Northbound APIs. Southbound APIs (e.g., OpenFlow
protocol) enable communications between controllers and
switches. Switches can identify network states, request flow
tables, and implement other requests via Southbound APIs.

Controller: SDN controllers, as the brain of a control plane,
provide the network with flexible programmability. Controllers
are to manage the data plane through southbound APIs. For
example, a switch finding no flow rule matched to a certain
packet can request updating the flow table from controllers
with an PACKET_IN request. Commonly, controllers can be
either state-independent (SI) or state-dependent (SD) based
on the requirements of upper-layer application services. SI
controllers do not require controller synchronization as SD
ones do. SD controllers act based on historical configurations,

1For simplicity, we use “host” and “switch” throughout this paper.



thus compared to SI ones, they add complexity by introducing
state synchronization techniques. In this paper, Curb supports
both SI and SD application services since the blockchain can
be regarded as a sate machine replication protocol, which
requires all honest controllers to achieve consensus on ordered
blocks, keeping the state machine fully synchronized.

Controller group and final committee: In our scheme, each
switch is assigned a controller group which constitutes a num-
ber of controllers. The assignment is determined by controller-
to-switch (C2S) and controller-to-controller (C2C) link delay,
controller capacity, and fault tolerance level. When a single-
point failure occurs such as packet dropping, denial of service,
or misconfiguration of flow tables, the controllers within
the same group can take responsibility. More importantly,
each operation can be decided by the majority of the honest
controllers through a consensus protocol. However, consensus
and blockchain might incur extra communication overheads.
Hence we adopt a group-based network topology and set up
a final committee, which helps Curb to decrease message
complexity from O(N2) to O(N). The protocol specification
is left to Section III-C.

Blockchain component: each controller is accompanied with
a blockchain system, which mainly consists of a consensus
core and a blockchain database. The consensus core de-
termines the order of blocks. In this paper, the consensus
algorithm we adopt is the practical byzantine fault-tolerant
(PBFT) algorithm, but we would like to emphasize that other
BFT consensus algorithms can also be applied to Curb. The
blockchain database persistently stores the chain of blocks,
and all the blockchain systems have an identical view of the
blockcchain ledger. Each block contains in its block body
serialized transactions in which critical information created
in SDN scenarios is recorded. For example, a transaction can
record new flow rules, controller assignment scheme, etc.

C. Workflow

Next, we illustrate the workflow of Curb step by step. Curb
first runs the initialization procedure [Step 0], then carries out
Steps 1-4 (denoted as one round) to handle requests and settle
down blocks as shown in Fig. 2.

Initialization [Step 0]. Each controller first generates a pair
of keys (pk, sk) and broadcasts pk as its identity (ID) to the
network. Then we assign each switch a controller group using
an optimization programming solver, namely OP(). The basic
OP() can take as inputs a switch list (denoted by swList), a
controller list (denoted by ctrList), and a series of constraints
concerning controller group size, controller capacity, and C2C
and C2S link delays. The minimum controller group size is
determined by the number of faulty nodes that a group is
required to tolerate in a specific application. A controller’s
capacity represents the maximum number of switches that the
controller can be concurrently connected to. The C2C and
C2S link delays are determined by geographic distances and
bandwidths. The basic OP() provides each switch a random
and deterministic controller group denoted by ctrList. Note
that the reassignment operation (explained in Step 4) can call
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Fig. 2. The workflow of Curb protocol

Algorithm 1: Routine of s-agent si
1 upon event request received from a host
2 broadcast 〈reqMsg, Si〉 to c ∈ ctrLists

3 upon event 〈REPLY, c, reqMsg, config〉 received from
controller c

4 if config matches with f messages in Rs then
5 if reqMsg = PKT-IN then
6 update flow table with config
7 else if reqMsg = RE-ASS then
8 update ctrLists with config
9 else

10 add 〈REPLY〉 to Rs

11 for each cj ∈ Rs do
12 if config does not match f messages then
13 broadcast 〈RE-ASS, s, cj〉 to ctrLists

a different OP() solver program, which adds new constraints
to the basic OP() solver.

In the following we illustrate the details of implementing
the basic OP(). To maximize the utilization of controller
resources, we formulate the objective function in the controller
assignment problem (CAP) as minimizing the controller usage.
Let binary variable Aij ∈ {0, 1} denote whether the controller
j is assigned to the switch i. Let xj ∈ {0, 1} denote whether
the controller j is assigned to a switch or not. Denote the set
of all controllers as C and the set of all switches as S. Then
one can represent the objective function as follows.

[O1] min
∑
j∈C

xj , (1)



Algorithm 2: Utilities of controller ci
1 Function Initialization()
2 generate (sk, pk) and broadcast ID = pk
3 ctrListi = OP(swList, ctrList, constraints)
4 recognize the finalCom
5 create the genesis block

6 Function HandleRequest(reqMsg, s, c, σ)
7 if 〈·, reqMsg, s, c, ·〉 ∈ reqBuffer then
8 discard the request
9 else

10 config = ComputeConfig(reqMsg)
11 add 〈TX, reqMsg, s, c, config〉 to reqBuffer

12 Function ComputeConfig(reqMsg)
13 if reqMsg = PKT-IN then
14 return new flow entries as config
15 else if reqMsg = RE-ASS then
16 remove byzantine nodes from ctrList
17 config = OP(swList, ctrList, constrants)
18 return config

where
1

N

∑
i∈S

Aij ≤ xj ≤ 1, ∀j ∈ C.

To tolerate f byzantine faulty controllers in each controller
group, each switch should be governed by a controller group
of size at least Bi = 3f + 1. Hence we formulate such a
constraint for each switch as below.

[C1.1]
∑
j∈C

Aij ≥ Bi, ∀i ∈ S. (2)

In addition, each controller has limited processing capability
for incoming requests generated from hosts, thus we should set
a constraint for the controller capacity to realize load balance.
Denote Qi as the maximum message load the switch i sends
in unit time and let Cj be the capacity of controller j. Then
the total number of received messages in a given time is upper
bounded by

∑
i∈S AijQi, which should not exceed Cj .

[C1.2]
∑
i∈S

AijQi ≤ Cj , ∀j ∈ C. (3)

Furthermore, we establish constraints on the C2S and C2C
link delays. This is useful in reducing the time cost of message
transmissions and the consensus process. The constraint of
C2S link delay is formulated as follows.

[C1.3] Aijdij ≤ Dc,s, ∀i ∈ S, (4)

where dij denotes the actual unidirectional delay from con-
troller j to switch i and Dc,s denotes the threshold of delay
for every C2S link. The dij is determined by the geographic
distance between switch i and controller j. And the constraint
of C2C link delay is depicted as follows.

[C1.4] AijAij′djj′ ≤ Dc,c j 6= j
′
,∀j, j

′
∈ C,∀i ∈ S

(5)

where djj′ denotes the real unidirectional delay from con-
troller j to controller j

′
and Dc,c denotes the threshold of

delay for controller-controller links.

Algorithm 3: Event handlers of controller ci
1 B intra consensus within each controller group
2 upon event 〈reqMsg, s〉 received from the switch s
3 if ci ∈ ctrLists then
4 if ci is the leader of ctrLists then
5 HandleRequest(reqMsg, s, c, σ)
6 if time out or reqBuffer is full then
7 pack 〈TX〉s in reqBuffer into a txList
8 launch Intra-PBFT(txList)

9 else
10 participate into Intra-PBFT(txList)

11 if Intra-PBFT(txList) is completed then
12 broadcast 〈AGREE, ctrListID, txList〉 to

finalCom

13 B final consensus across all controller groups
14 upon event 〈AGREE, ctrListID, txList〉 from a

controller
15 if ci ∈ finalCom then
16 if ci is the finalCom leader then
17 add txList to blockBuffer
18 if time out or blockBuffer is full then
19 pack all txList into a new block Bh

20 launch Final-PBFT(Bh)

21 else
22 participate into Final-PBFT(Bh)

23 if Final-PBFT(Bh) is completed then
24 broadcast 〈FINAL-AGREE, c, Bh〉

25 upon event 〈FINAL-AGREE, c, Bh〉 from controller v
26 if FINAL-AGREE matches with f messages ∈ Fc

then
27 add Bi to blockchain
28 for each 〈TX〉 ∈ Bh do
29 //〈TX〉 maps to 〈TX, reqMsg, s, c, config〉
30 send 〈REPLY, c, reqMsg, config〉 to s

31 else
32 add 〈FINAL-AGREE〉 into Fc

For a switch i, OP() returns a controller list ctrListi. The
final committee finalCom is of size 3f+1, and is chosen from
the first 3f +1 controller groups sorted by the group identity
number. Since OP() might output two controller groups with
overlapped controllers, we let each controller group elect only
one finalCom member which should not be included by the
members elected from previous groups. Since all switches and
controllers have an identical view of the assignment, they
can make the same choice on finalCom following the same
finalCom selection rule. After settling down the controller list



and the final committee list, all initial controllers create the
genesis block to record the initialization results. After initial-
ization, the network can process and forward data packages
generated by hosts.

Curb supports two basic functionalities: flow table config-
uration and controller reassignment. A flow table contains
multiple flow entries and determines how to forward packets.
A switch can receive configuration information from assigned
controllers and then change flow entries accordingly. Besides,
if a controller is found malicious, a switch can start a controller
reassignment process to kick the malicious controller out. In
the following, we depict the complete workflow of Curb in
detail. As shown in Fig. 2, each round consists of four major
steps.

Sending Packet-in/Reassignment Requests [Step 1]. To
apply for new flow table entries or launch a controller
reassignment, a switch s can broadcast PKT-IN (notation
of a PACKET_IN request) or RE-ASS (notation of a
RE_ASSIGNMENT request) to the controller group it belongs
to through the southbound OpenFlow channels. For simplicity,
we denote a request as reqMsg. Each request should be signed
so that controllers can validate its authenticity and integrity.
A switch sends a PACKET_IN request to a controller when
the packet should be forwarded to the controller reserved port
using explicitly specified flow entry or table-miss flow entry.
In response, the controller sends the switch a PACKET_OUT
message containing a list of actions that can be applied to the
switch. For example, the controller can modify flow tables
by embodying a PACKET_OUT message with FLOW_MOD
commands. Switches can choose to configure packet-in events
using buffered packets, which are processed after receiving
PACKET_OUT messages or expire after a period of time. And
a PACKET_OUT message can contain a buffer ID referencing
a specific buffered packet.

Intra-group Consensus [Step 2]. In each controller
group, only one controller is appointed as the leader, who
needs to handle requests, generate new transactions, and
launch intra-group consensus for the controller group it
governs. Once receiving a reqMsg, the group leader in-
vokes HandleRequest() to process it (line 6-11 in Algo-
rithm 2). If 〈·, reqMsg, s, c, ·〉 has been recorded in a re-
quest buffer denoted by reqBuffer, the leader discards it;
otherwise, the leader can compute a configuration as config
by calling ComputeConfig(reqMsg). Concretely, computing
config is to create new flow entries for a PKT-IN , or
process reassignment for a RE-ASS by removing byzantine
nodes from the full controller list ctrList and then computing
OP(swList, ctrList, constrants). Afterwards, the leader gener-
ates a transaction TX and adds 〈TX, reqMsg, s, c, config〉 to
its local reqBuffer. Once reqBuffer is full, the leader packs
all transactions into a new transaction list txList and launches
intra-group consensus, namely Intra-PBFT(txList), which is
a byzantine fault tolerant consensus algorithm. In this paper,
we leverage PBFT as a standard consensus core due to its
matureness and effectiveness validated by the Hyperledger
Sawtooth, but Curb can be implemented with other BFT

protocols including Tendermint and Hotstuff. The intra-group
consensus starts from a proposal sent by the leader. Followers
(controllers in a group except for the leader) in the same group
can participate into the consensus process. For simplicity, we
eliminate further details of PBFT in Algorithm 2. At the
end of intra-group consensus, each controller broadcasts a
〈AGREE, ctrListID, txList〉 to the final committee finalCom.
Note that all controller groups can process requests in parallel,
which can significantly reduce the consensus time. To ensure
consistency of configurations across all groups, we set a final
consensus process, which agrees on the order of blocks gen-
erated by each controller group. In the following we illustrate
the process of carrying out final consensus.

Final Consensus [Step 3]. The final committee is in
charge of the final consensus process with the same consensus
algorithm (i.e., PBFT) to decide on the order of blocks
received from controller groups. The final committee leader
(with the highest ID number in the committee) is responsible
for generating new blocks and proposing the blocks to the final
committee members. A new block Bh serializes transactions
in txList received from the controller groups. The final com-
mittee leader launches the final consensus procedure, namely
Final-PBFT(Bh). Once final consensus is reached, the final
committee members broadcast Bh to all controllers for infor-
mation update. For each controller c, it should receive f + 1
identical final-agreed messages to confirm that Bh is valid.
This is to prevent from byzantine final committee members
who propose malicious blocks. If Bh is valid, a controller
can add Bh to its local blockchain database. Then for each
〈TX〉 ∈ Bh, each controller sends 〈REPLY, c, reqMsg, config〉
to s.

Finish Configuration [Step 4]. The final step is to complete
the configuration procedure following config received from
a controller group. A switch s records the received reply
messages in Rs. After receiving at least f+1 consistent config,
s updates its configuration accordingly. If reqMsg = PKT-IN,
s can update the local flow rules according to config. If
reqMsg = RE-ASS, a switch should change links to controllers
for a controller group update, which aims to remove faulty
controllers from the network. Additionally, s also detects
byzantine controllers based on the faulty configuration, which
contradicts other f + 1 identical config. Then s reports faulty
controllers in a RE-ASS message to apply for a replacement
of malicious controllers. A valid RE-ASS request can lead to
a reconfiguration, which removes faulty controllers from and
add new honest controllers to the current controller group.

The basic OP formulation can be described as follows.

[O2] min
∑
j∈C

xj ,

[C2.1]
∑
j∈C

Aij ≥ Bi, ∀i ∈ S,

[C2.2]
∑
i∈S

AijQi ≤ Cj , ∀j ∈ C,

[C2.3] Aijdij ≤ Dc,s, ∀i ∈ S,



[C2.4] AijAij′djj′ ≤ Dc,c j 6= j
′
,∀j, j

′
∈ C, ∀i ∈ S,

[C2.5] xj = 0, ∀j ∈ Cbyz,

[C2.6] Aij = 1, ∀(i, j) ∈ LEADER,

(6)

where the objective function [O2] and the first four constraints
[C2.1− 2.4] are consistent with the formulation [O1, C1.1−
1.4] of the basic OP. And [C2.5] xj = 0,∀j ∈ Cbyz is the
constraint requiring that all byzantine controllers are removed
from the network, where Cbyz denotes the set of all byzan-
tine controllers. The constraint [C2.6] Aij = 1,∀(i, j) ∈
LEADER, where LEADER is the set of all group leaders, is
to fix leader positions in all controller groups. [C2.6] targets
to reduce the link changes since a leader connects to all
followers. There are two types of OP solvers proposed for the
reassignment process. Eq. (6) represents the first type named
trivial controller reassignment (TCR), while the second type
called least-movement controller reassignment (LCR) adopts
a different objective function as Eq. (7).

[O3] min{
∑
j∈C

xj +
∑

i∈S∧j∈C

|Aij − aij |}. (7)

where Aij and aij denote the new assignment and the
previous assignment, respectively. Hence min{

∑
j∈C xj +∑

i∈S∧j∈C |Aij − aij |} takes into consideration both mini-
mized controller usage and minimized changed links. These
two objective functions make trade off between the OP solving
time and the controller movements. We show the performance
of both OP solvers and their adaptions in Section IV.

D. Message Complexity of the Curb Protocol

To demonstrate the efficiency of Curb, we provide the fol-
lowing theorem and its informal proof regarding the message
complexity. A more formal analysis can be found in the full
version of this paper.

Theorem 1. The message complexity of Curb is O(N), where
N is the number of SDN controllers.

Proof. Assume the number of groups is k and the average
group size is c. According to Eq. (6) [C2.1], c is lower-
bounded by Bi = 3f + 1, where f is the maximum number
of faulty nodes a controller group can tolerate. Besides, c
is asymptotically equal to Bi since the OP solver satisfying
Eq. (6) [C2.1] cannot output a value of

∑
j∈C Aij much higher

than Bi but a value close to Bi. In Curb we set the value of
f to be O(1), so O(c) and O(Bi) both belong to O(1). Since
O(k · c) = O(N) 2, it is straightforward to obtain that k
is O(N). According to Algorithm 3, the message complex-
ity of Curb is determined by four major steps: intra-group
consensus, broadcasting AGREE messages to final committee,
final consensus, and broadcasting FINAL-AGREE messages to
controllers. The message complexity of the intra-group con-
sensus is O(kc2) since there are k groups with each running

2Note that N = k · c might not hold since controller groups can overlap
due to the characteristic of OP.

PBFT (O(c2)). Similarly, the message complexity of the final
consensus is O(c2) since the final committee is of size O(c).
The message complexity of broadcasting the AGREE messages
and broadcasting the FINAL-AGREE messages is O(Nc) and
O(cN), respectively. Therefore, the message complexity of
Curb is O(kc2 + c2 + 2cN) = O(N).

IV. EVALUATIONS

Configuration: We conduct the simulation of Curb with
around 6700 lines of Python codes atop Mininet [15] (version
2.3.0 ), and show the network topology with about 2200 lines
of HTML codes. With Mininet, Curb first emulates Open
vSwitch. Then Ryu [16] running the OpenFlow [17] protocol
is used to implement SDN controllers. The communications
among controllers and switches are based on gRPC [18], a
widely adopted Remote Procedure Call (RPC) framework. We
use the Gurobi optimizer [19] (version 9.5.0), a mathematical
optimization solver to construct the OP solver, and NetworkX
[20], a software for complex networks to compute the shortest
paths and path lengths. The shortest paths determine the flow
rules that controllers would send to switches. Moreover, key
generation and digital signature schemes are supported by
the pure-Python ECDH and ECDSA. To validate Curb in a
realistic simulation setting, we adopt the publicly available
Internet2 topology as shown in Fig. 3. The velocity of light in
cables is 2× 108 m/s and the bandwidth is set as 100 Mbps.
Together with the path lengths, we can calculate the link delay
of any path in Internet2.

Fig. 3. An example of Internet2 topology with 16 controllers (blue points)
and 34 switches (yellow points). Each edge represents the link between two
nodes.

The simulation is run on a DELL PowerEdge R740 server
with two Intel silver 4214R CPU, each having 12 CPU cores
and 2.40 GHz frequency. The DRAM size is 128 GB (2×64
GB) with the type of DDR4. The L1 cache of each CPU
core is 768 KB while the L2 cache is 12 MB. The 12 cores
in each CPU processor share the same 16.5 MB L3 cache.
Except where noted, we measure 200 times for each node
to obtain the average of each data point after a warm-up
of 30 seconds, and each test involves 34 switches and 16
controllers following the original Internet2 topology. Besides,
the constraints of C2C link delay [C1.4] and [C2.4] are not
adopted in all experiments since they are not compulsory and
removing them avoids large computation overheads (details
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Fig. 5. Performance of handling the PACKET_IN requests with the varying number of switches

can be found in Section IV-B1). Our evaluation quantitatively
covers the following three aspects:

1) Curb’s capability of defending against byzantine nodes;
2) the performance of handling PACKET_IN requests;
3) the performance of two types of OP solvers for

controller reassignment and that of handling the
RE_ASSIGNMENT requests.

A. Flow Table Update

1) Byzantine resilience test: To evaluate the capability of
defending against byzantine, we conduct three experiments.
Experiment ¶ presents the case when Curb handles one
byzantine node which does not respond to requests within
timeout (500 ms). As shown in Fig. 4, Curb finds out the
byzantine node in the 5th round, and finishes reassignment and
kicks out the byzantine node in the 6th round; after that, the
latency and throughput recovers to the normal levels (latency
is about 460.24 ms and throughput is about 71.90 TPS).
Experiment · simulates the case when Curb simultaneously
handles three byzantine nodes in different controller groups.
As shown in Fig. 4, three byzantine nodes cause large latency
since they hinder the intra-group consensus of three different
groups as well as the final consensus. Curb can remove these
three byzantine nodes in one round by calculating OP once.
The latency and throughput returns to normal within only
two rounds. Finally, experiment ¸ illustrates a more intricate
case when three byzantine nodes jointly cause large latency
by keeping high response time in (200, 500) ms. In such a
circumstance, we cannot recognize these “lazy” nodes since
they do not exceed the designated timeout of 500 ms, but
they can negatively impact the performance. Hence we choose

to only allow lazy nodes to exist for 5 rounds (application-
specific waiting time), after which they are being treated
as byzantine nodes. Besides, in Fig. 4(c), Curb adopts a
parallel processing mode. The intra-group consensus and final
consensus proceed in parallel to achieve high performance.
The results demonstrate that the parallel Curb has about 2 ∼ 3
times of the throughput of the non-parallel mode.

2) Performance of handling the PACKET_IN requests: In
the following, we illustrate the performance of handling the
PACKET_IN requests with the varying number of switches
and f . The simulations measure the latency of handling the
PACKET_IN requests and the throughput of responses to the
PACKET_IN requests. The number of switches in Fig. 5 varies
in [4, 34]. Note that the error bar would not be shown in figures
if the error doesn’t exceed a threshold. As shown in Fig. 5(a),
the latency slightly increases, ranging from 218 ms to 258 ms
with the increasing number of switches. Fig. 5(b) indicates that
the throughput of both non-parallel and parallel Curb linearly
increase with the number of switches. The throughput keeps
on rising because 16 controllers are sufficient to handle all
switches. With more switches, the users need to increase the
number of controllers according to the results of OP.

Next, we discuss the results presented in Fig. 5(c) and
5(d), where f represents the maximum number of byzantine
nodes that a controller group can tolerate. To protect against
byzantine attacks, each controller group is of size 3f + 1.
For example, when f = 4, each switch is governed by 13
controllers. The larger the f , the more number of controllers
are required. The latency of handling the PACKET_IN re-
quests increases with f since assigning more controllers in
each group results in larger communication overheads in both
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Fig. 8. The percentage of dynamic links (PDL) vs. Dc,s

intra-group and final consensus. Nevertheless, the throughput
only slightly decreases since each controller group processes
requests in parallel, which significantly avoids the commu-
nication bottleneck that might occur with centralized SDN
controllers.

B. Reassignment

1) Performance of OP: The performance metrics include
time cost, the number of used controllers, and percentage of
dynamic links. The time cost reflects the efficiency of solving
OP. The number of used controllers are determined by the
OP whose objective function is to minimize the controller
usage. We utilize the percentage of dynamic links (PDL)
to depict the dynamicity of the SDN topology. PDL is the
number of links changed over the total number of links
that exist during a reassignment. For example, assume we
have a network consisting of 30 links in total. If after a
reassignment, Curb removes one controller which connects
two switches (delete two links) and adds a new controller
which connects three switches (add three new links). Then

PDL is calculated by (2 + 3)/(30 + 3) = 15%. In this study,
we compare TCR and LCR with varying Dc,s under different
combinations of constraints. Recall that the leader constraint
is Aij = 1,∀(i, j) ∈ LEADER and the C2C delay constraint
is AijAij′djj′ ≤ Dc,c, where j 6= j

′
,∀j, j′ ∈ C,∀i ∈ S.

Fig. 6 reports the time cost vs. Dc,s. We can draw the
following useful conclusions. First of all, the leader constraint
causes little extra time cost while the Dc,c constraint brings
large extra time cost of round 600 ms. Without the Dc,c

constraint, the time cost is lower than 100 ms. Secondly,
the time cost of TCR is slightly lower than LCR since LCR
considers a more complicated objective function. Thirdly, the
Dc,s does not clearly impact the OP solving time. Fourth,
the Dc,c constraint leads to significant time overheads since
the constraint is quadratic. Solving an integer quadratically
constrained programming (IQCP) problem takes more time
than an integer linear programming (ILP) problem with similar
constraints except for a quadratic constraint. In Fig. 7, Curb
utilizes less controllers if Dc,s is higher. A higher Dc,s allows
a switch to connect controllers in a wider range so using
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Fig. 9. Performance of handling the RE_ASSIGNMENT requests

less controllers can meet the constraints. Besides, the TCR
and LCR methods output the same number of controllers
being used since both objective functions aim to minimize
the controller usage. Moreover, adding the Dc,c constraint can
result in more controllers enrolled because more controllers
can compose a better connected network with lower link delay.
The leader constraint does not change the controller usage but
has impact on PDL.

Finally, we explore how much the reassignment can change
the network links. Firstly, Curb changes less links with a lower
Dc,s as presented in Fig. 8. This is because a lower Dc,s

can result in a larger number of used controllers according
to Fig. 7. Hence each controller can have fewer links with
switches and substituting a byzantine controller causes less
link changes. Secondly, LCR has better performance of PDL
than TCR. The reason is that LCR’s objective function consid-
ers the minimized controller usage plus the minimized number
of changed links, but TCR only minimizes the controller
usage. Thirdly, bringing the leader constraint can result in less
PDL. The second and third observations indicate that to have a
less dynamical network, we can set a lower Dc,s if controllers
are sufficient to be used, or bring the leader constraint.

2) Performance of handling the RE_ASSIGNMENT re-
quests: Next we simulate the process of handling RE-ASS .
In Fig. 9(a), the latency vs. the number of switches slowly
increases. The latency with TCR and LCR solvers is very close
since the time cost of TCR and LCR is nearly the same as
shown in Fig. 6(a). In Fig. 9(b), Curb adopting LCR has larger
latency than using TCR. With more switches and controllers,
the extra time cost of LCR compared to TCR become more
explicit. Concerning throughput, Fig. 9(c) shows that LCR and
TCR have similar throughput, and the throughput of both cases
increases with the number of switches. With an increasing f ,
the throughput decreases because a larger group size results
in a slower consensus process.

V. CONCLUSION

We present Curb, a novel SDN control plane scheme that
seamlessly integrates blockchain and BFT consensus into a
group-based control plane, addressing security and scalability
concerns of the state-of-the-arts. Curb supports trusted flow
rule updates and adaptive controller reassignment. Importantly,
Curb uses a group-based technique to realize a scalable

network where the message complexity of each round is upper-
bounded by O(N). We also conduct extensive simulations on
classical Internet2 network topology to validate our approach.
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