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Abstract—Zero-Knowledge Succinct Non-Interactive Argu-
ment of Knowledge (zk-SNARK) is a practical zero-knowledge
proof system for Rank-1 Constraint Satisfaction (R1CS), enabling
privacy preservation and addressing the previous scalability
concerns on zero-knowledge proofs. Existing constructions of zk-
SNARKs require huge memory overhead to generate proofs in
that the size of the zk-SNARK circuit can be large even for a
very simple use case, which limits the applications for regular
resource-constrained users. To reduce the memory utilization of
zk-SNARKs, this paper presents a hash-based method “Split”.
Concretely, Split intends to partition the zk-SNARK circuits so
that components can be processed sequentially while ensuring
strong security properties leveraging hash circuits. As a zk-
SNARK circuit is partitioned, obsolete variables are no longer
preserved in the memory. We further propose an enhanced
Split as n-Split, which leads to better optimization by properly
choosing multiple splits. Our experimental results validate the
effectiveness and efficiency of Split in conserving memory usage
for resource-constrained provers as long as the circuit can be
partitioned to a Good Split, indicating that via Split zk-SNARKs
can be brought one step closer to practical applications.

Index Terms—memory optimization, zk-SNARKs, zero-
knowledge proof, privacy

I. INTRODUCTION

Zero-knowledge proofs bring a privacy solution to enable a
prover to convince verifiers of a series of statements, without
leaking essential information. For instance, one can demon-
strate that he/she has permission to enter a room by proving
that the identity or biological information satisfies specific
access rules, while keeping the information private. There
exist a number of privacy-preserving techniques in blockchain-
enabled applications based on zero-knowledge proofs, espe-
cially in financial fields, such as Zerocash [1], Decentralized
Conditional Anonymous Payments [2], and BlockMaze [3].
These applications can protect the information (e.g., identities
of sender and receiver, transfer amount, etc.) from leakage
without eliminating the transparency brought by blockchain.
Apart from finance, zero-knowledge proofs have been widely
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adopted in other fields such as decentralized file systems [4],
smart grids [5], traffic management [6], data trading [7],
key management [8], COVID-19 contact tracing [9], and so
on. Privacy solutions based on zero-knowledge proofs don’t
require the support of special hardware such as TEE [10].

Zero-Knowledge Succinct Non-Interactive Argument of
Knowledge (zk-SNARK) [11] is one of the main classes
of zero-knowledge constructions. zk-SNARKs provide gen-
eral solutions for any problem defined in NP languages,
and thus can be more widely adopted compared to other
approaches [12], [13]. In zk-SNARKs, a problem is described
in Rank-1 Constraint Satisfaction (R1CS), an NP-complete
language that generalizes arithmetic circuit satisfiability. One
of the main features of R1CS is that each variable in R1CS
must be preserved during the whole procedure, even if it is
a temporary one that only exists for a short period under
the view of traditional programming. A garbage collector that
cleans out obsolete variables is not applicable in R1CS.

Thus, zk-SNARKs are usually inefficient in memory usage.
Provers are supposed to be servers that have plenty of memory
modules installed. The huge memory consumption limits the
applications of zk-SNARKs in areas where provers don’t have
sufficient memory, e.g., personal computers and cellphones.
For example, regular smart phone users are unable to be a
prover in large scale zero-knowledge proofs, although the
privacy issues in their smart phones have attracted serious con-
cerns. Take a QAP-based zk-SNARK construction proposed in
[14] as an example. Consider a simple circuit that is a loop
iteration updating a 32-bit integer x← a ·x+b. It takes 1.173
GB memory for iterating 10,000 times.1 When the number of
iterations grows to 300,000, 32.513 GB memory is occupied.
This memory burden grows more severe for deep learning
techniques based on zk-SNARKs. To remedy this drawback,
SafetyNets [15] uses average pooling instead of max pooling to
save memory, despite that the latter performs better; ZEN [16]
parallelizes the steps across multiple machines in order to
overcome the large memory consumption of the verifiable
model training.

Even though the memory overhead of zk-SNARKs is high,
few works focus on optimizing the memory usage. In fact,
the majority of zk-SNARK constructions do not pay attention
to memory consumption. The benchmark for zk-SNARK con-
structions presented by [17] only focuses on CPU time and

1The data are retrieved from our evaluation in Sec. V.
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proof size, ignoring the memory usage, although the authors
claimed that insufficient memory can obviously affect the
performance according to the test results. Due to the memory
constraints of large circuits, Wu et al. [18] asked a question:
can zk-SNARKs be used for circuits of much larger sizes,
and at what cost? Their solution is to distribute the circuits
into multiple clusters, which improves the performance, but
for regular personal computers or laptops with no clusters,
their scheme is not applicable. This motivates us to ask the
following question: can zk-SNARKs be used for circuits of
much larger sizes on a single machine, and at what cost
measured in both CPU time and memory?

To answer these questions, we propose Split, which can
partition a zk-SNARK circuit into two components that can be
processed sequentially. As the circuit is partitioned, obsolete
variables are no longer needed to be preserved in memory.
We further provide an enhanced Split, denoted as n-Split,
which contributes to better optimization by properly choosing
multiple splits. To ensure the integrity of the partition and
guarantee strong security, hash circuits are involved to prevent
malicious users from changing the input/output variables of
each component. In our proposed scheme, the challenge is to
partition the circuit. A zk-SNARK circuit can be considered as
a directed acyclic graph, where variables and constraints are
presented as nodes. Our proposed scheme partition the graph
into two disjoint subsets. For every edge across two subsets
there is an intermediate variable as the input of the hash
function, which brings additional CPU and memory overhead.
It is challenging to partition the graph in order to reduce the
memory usage while having a reasonable CPU overhead.

Our contributions are summarized as follows:

• We introduce Split, a hash-based memory optimization
method for zk-SNARKs that can efficiently reduce the
memory usage as long as it can be partitioned as a
Good Split, especially for loop-based circuits. To our
best knowledge, Split is the first method for zk-SNARKs
aiming at improving memory usage on a single machine
without sufficient memory.

• We rigorously define Split to partition a circuit into
two components which can be processed sequentially in
memory, and introduce the concept of Good Split. These
definitions provide guidance in properly choosing a split
mechanism. We further extend the concept of Split to
n-Split that partitions a circuit into n components.

• We provide analysis to demonstrate that splitting a circuit
does not compromise its security properties compared
to the original one. We also conduct experiments to
evaluate the proof-of-concept of Split and n-Split. Our
experimental results demonstrate that Split can reduce
the memory usage of a commonly used loop structure
roughly to 50% for 2-Split with little time increase, and
to 27% for 5-Split with about 20% of additional CPU
time, enabling zk-SNARKs to be applicable for resource-
constrained provers.

This paper is organized as follows. In Sec. II we introduce
the most related work and the components of popular zk-
SNARK constructions. In Sec. III, we define Split, Good

Split, n-Split, and the corresponding zero-knowledge proof
procedures, explain how the memory usage gets reduced via
Split, and demonstrate Split via two examples. Security and
performance analysis, as well as the experimental results, are
reported in Sec. IV and Sec. V, respectively. Finally in Sec. VI,
we conclude this paper and discuss future research.

II. RELATED WORK AND PRELIMINARIES

A. Related Work

In this subsection, we first introduce zk-SNARK construc-
tions on which our Split scheme can be applied, namely
QAP-based zk-SNARKs and IOP-based zk-SNARKs. Then we
overview previous works aiming at decreasing memory usage,
including optimization in specific areas and distributing the
memory into a cluster.

QAP-based zk-SNARKs. Such constructions [19] [14] [20]
reduce R1CS to Quadratic Arithmetic Program (QAP) in-
stances. The proof size is constant, and the verification
procedure is efficient in milliseconds, making them suit-
able for blockchain-based applications, especially wireless
blockchain [10], [21], where both persistent storage space and
CPU resource are extremely valuable and the memory capacity
of verifiers is constrained. Thus, QAP-based zk-SNARK is the
most widely-used class of zk-SNARK constructions.

IOP-based zk-SNARKs. zk-SNARKs can be constructed
from interactive oracle proofs (IOPs) via BCS transformation
[22]. IOP-based constructions [23] [24] [25] support the R1CS
language and have better performance for provers measured in
CPU time compared to QAP-based zk-SNARKs.

Memory optimization in specific areas. A lightweight au-
thentication scheme, TinyZKP [26], based on zero-knowledge
proofs, was implemented on TinyOS-based sensor nodes. This
scheme reduces memory usage by getting rid of the complex
key management in authentication. Khernane et al. [27] pre-
sented the design and evaluation of a secure lightweight and
energy-efficient authentication scheme, BANZKP, based on
zero-knowledge proof and a commitment scheme. BANZKP
decreases the size of a pre-distributed set of keys and the
memory usage by 56% compared with TinyZKP. Their op-
timizations are directly performed by optimizing the authen-
tication algorithm to reduce the size of zero-knowledge proof
codes, which are only applicable in authentication schemes.
An application-independent scheme is needed to minimize
memory usage for various zero-knowledge proof applications.

Extending the memory occupation into clusters. Wu et
al. [18] presented a construction that distributes the generation
of a zero-knowledge proof across multiple machines in a
computer cluster, mainly because of the memory resource
limitation. Such a mechanism should facilitate the adoption
of zk-SNARKs in cloud-based applications [28].

B. Preliminaries

In this subsection, we first define zk-SNARK, introducing
its main procedures and security properties. Then we present
R1CS, the “interface” between the front end and the back
end of a zk-SNARK system, as well as circuit, an equivalent
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representation of R1CS. Finally, we introduce high-level pro-
gramming languages and QAP, which are the corresponding
typical implementations of the front and back end.

1) zk-SNARKs: A zk-SNARK system is used to prove
that a prover knows a set of values such that ypub,ypriv =
F (xpub,xpriv), where F refers to a circuit that acts like a
function, xpub, xpriv refers to the public/secret inputs, and
ypub, ypriv the public/secret outputs.2 No information about
the values of secret inputs/outputs is leaked.

A zk-SNARK system usually consists of the following three
procedures.
• Setup(1K, F )→ (pk, vk).

Given a security parameter 1K and a zk-SNARK circuit
F , a trusted party generates public parameters consisting
of a proving key pk and a verification key vk. The
memory usage of this procedure is high, but considering
that for an F , the setup is needed to be run only once,
and it is executed by a trusted party that is supposed to
have sufficient hardware, the memory usage issue in this
procedure can be tolerated.

• Prove(F,xpub,xpriv,ypub,ypriv, pk)→ π.
Given a zk-SNARK circuit F , public/secret inputs xpub,
xpriv, public/secret outputs ypub, ypriv, and a proving key
pk, a prover outputs a proof π that proves ypub,ypriv =
F (xpub,xpriv) without revealing any information about
xpriv and ypriv. This is an expensive procedure that
requires a huge amount of resources in both memory and
CPU time. As end users that need privacy protection may
not have sufficient memory capacity, memory optimiza-
tion is needed for them to run this procedure.

• Verify(xpub,ypub, π, vk)→ {0, 1}.
Given public inputs/outputs xpub, ypub, a proof π, and
a verification key vk, a verifier can verify the proof π
and output 1 if and only if π passes the verification. This
procedure is efficient; it takes time in milliseconds for
QAP-based zk-SNARKs.

zk-SNARKs satisfy the following three properties:
• Completeness. Knowing xpriv,ypriv to the validity of a

statement ypub,ypriv = F (xpub,xpriv), the prover is able
to convince the verifier.

• Soundness. A malicious prover is not able to convince
the verifier in the case that ypub,ypriv 6= F (xpub,xpriv).

• Zero-knowledge. The verifier learns nothing about xpriv
and ypriv.

To better illustrate how zk-SNARK systems work, we
present the basic structure of a zk-SNARK system considered
in this paper in Fig. 1.

2) High-level Programming Languages: Developers use
high-level programming languages such as xJsnark [29],
ZoKrates [30], and Leo [31] to express the programming
logic of a zk-SNARK, which is further compiled into R1CS
language by compiler. A typical programming code contains
condition statements, loop statements, function calls, and

2In other studies, a zk-SNARK system is often defined as proving
F (x,w) = 1, while x and w stands for all public and secret variables
respectively. These two definitions are equivalent. Our choice is for the sake
of simplicity in scheme design, as our work resides in the front end.

R1CS

High-level
Languages

QAP

IOP
Manual

Construction

Compile Reduction

Reduction

Prove

Setup

Verify

Front End Back End

Fig. 1: The basic structure of zk-SNARK systems

recursions. Due to the limitation of the R1CS language, these
statements are unrolled by the compiler, which is introduced
in Sec. II-B5. Thus, even a simple program could be compiled
into a very large R1CS instance, and therefore requires a huge
amount of memory.

3) Rank-1 Constraint Satisfaction (R1CS) and the Arith-
metic Circuit: An R1CS instance φ over a prime field F is a
tuple (k,N,M,a,b, c), where a,b, c are three matrices over
F, M is the number of constraints, N is the number of all
variables, and k is the number of public variables. We define
the size of a zk-SNARK circuit F as |F | = N .

For a solution vector s = (s1, s2, s3, . . . , sN ) (the first k
values are visible to everyone), the following condition is met
for all i ∈ [1,M ]:

(

N∑
j=1

ai,j · sj) · (
N∑
j=1

bi,j · sj)− (

N∑
j=1

ci,j · sj) = 0

Note that although not mandatory, it is often assumed that
the first variable is a public one with value s1 = 1. Each
row in the three matrices stands for a constraint that consists
of addition, subtraction, and multiplication operations. For
example, the following matrices

a =

(
1 0 0
0 1 0

)
,b =

(
1 0 1
1 0 0

)
, c =

(
0 1 0
0 0 −1

)
,

require a solution vector (1, s2, s3) with the following two
constraints: s2 = 1 + s3 and s3 = −s2.

R1CS is widely used in nearly all zk-SNARK construc-
tions.3 Note that the matrix definition of R1CS is good to
express constraints, thus easy to be handled by back-end
implementations, but it is not straightforward enough to front
end. Although a prover needs to provide such a solution vector
in order to prove a statement, in the front end, the variable
values are derived from calculations instead of “guessing”. A
prover actually fills the input values, carries out calculations,
and finally obtains all values. An equivalent of R1CS, a
(arithmetic) circuit, is more straightforward to the front-end
implementations, which is introduced here.

An arithmetic circuit is a directed, connected, unweighted,
acyclic graph G = (V,E), where V contains two kinds
of nodes: variables Vvar (also known as wires) and basic
constraints Vcon (also known as gates). An edge only exists for
the connection between a variable and a constraint: ∀(v1, v2) ∈

3For those zk-SNARK back ends that do not aim at R1CS, e.g., PLONK,
R1CS wrappers can be adopted.
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E, (v1 ∈ Vvar ∧ v2 ∈ Vcon) ∨ (v1 ∈ Vcon ∧ v2 ∈ Vvar).
All source nodes are called input variables: Vinput = {v ∈
V|v 6= v2,∀(v1, v2) ∈ E} ⊂ Vvar, and all sink nodes are
called output variables: Voutput = {v ∈ V|v 6= v1,∀(v1, v2) ∈
E} ⊂ Vvar. A constraint node contains a meta tag identifying
the operator, denoted as tagoperator(v), which can be addition,
subtraction, or multiplication. A variable node contains a meta
tag identifying whether the variable is a public one or a secret
one, denoted as tagvisibility(v). It may also contain a meta tag
tagvalue(v) ∈ Fp for the value when a prover is calculating or
proving, but it must not contain a value when the circuit is just
constructed at the design stage, except for public variables that
are designated as constants. Besides, although not mandatory,
intermediate variables Vinter = Vvar−Vinput−Voutput are all
secret ones.

Before a prover proves by following the back-end protocol,
he/she needs to fill all variables in R1CS (the circuit) with
values by calculation. The prover first fills all input variables
with any value he/she selects. Then, all the nodes are traversed
in the topological order. When a constraint node vcon ∈ Vcon
is visited, all the previous nodes {v1|∀(v1, vcon) ∈ E} are
already filled with values. The calculation result is then saved
in the constraint node denoted as tagresult(vcon). When a
variable node vvar ∈ Vvar is visited, the value can be copied
from its parent constraint nodes {v1|∀(v1, vvar) ∈ E}. Note
that there can be more than one parent constraint node of vvar,
and in this case, if these constraint nodes have different values,
the calculation aborts.4 After all the nodes are traversed and
processed in this way, all the variables have been filled with
values that meet the constraints.

a

b
t+

c

× d

Input
Variables

Intermediate
Variables

Output
Variables

3

5
t+

2

× d

3

5
8+

2

× 16
3

5
8+

4

× 16

A prover fills the input variables with values

A malicious prover changes some values but 
the constraints are no longer met. He/she is 
then unable to prove.

He/she calculates the rest values and proves 
the constraints are met with these values, 
where only public values are visible.

Public Variable

Secret Variable

Constraint

Fig. 2: How zk-SNARKs work in the front-end view

4) How zk-SNARKs Work from the Front-End View: A zk-
SNARK system enables a prover to prove that he/she owns a
group of variables satisfying the given constraints, where some
values of the variables are secret. For instance, considering a
constraint d = (a+b) ·c, where a and d are public. The prover
first generates the inputs a, b, and c, and calculates t← a+ b,
d ← t · c. He/she then publishes the values of a and d, and

4Even if a malicious prover refuses to abort the calculation in this case,
the prove procedure would fail by the back-end protocol, as the constraints
are not met.

runs a zero-knowledge protocol to get a proof. Verifiers are
then convinced that the prover actually owns valid b and c.
Fig. 2 illustrates the constraints of variables mentioned above
as a graph. The prover fills the input values he/she chooses
to the graph and calculates the rest. When all the values are
calculated, he/she can then prove that he owns this group
of values, in which some (input/output) values are visible to
everyone, while the rest are secret.

To implement such a zk-SNARK system, we need to
consider two problems:

1) Given a standard form of constraints of variables, design
a protocol that enables the prover to convince others.

2) Given the constraints of variables that are described in
other languages, such as a formula written in a human-
readable form or a programming code, convert it to the
standard form.

A solution to the first problem is often called the back
end of a zk-SNARK system, while the front end corresponds
to the latter. Most zk-SNARK systems choose R1CS as the
standard form of constraints of variables, which are defined in
multiplication of matrices. An equivalent concept of R1CS, a
circuit, is a group of constraints of variables in a graph form,
where the constraints are limited to addition, subtraction, and
multiplication in Fp. The back end of a zk-SNARK system
is significant and thus draws the most attention in recent
years. Different cryptographic methods have been adopted to
construct different zk-SNARK systems such as Groth16 [20]
and Aurora [24]. The front end seems to be more like an
engineering issue, mainly for the compilers to convert high-
level programming languages into R1CS, even though some
developers prefer writing the R1CS by hand.

A number of works focus on the back end. However, the
front end is as significant considering the security properties
and performance of the system. A bad front-end implemen-
tation might cause the constraints badly designed such that
malicious provers are able to generate a proof with arbitrary
values without being noticed, or cause unnecessary variables
or constraints that incur more overhead. Since our optimization
target is a front-end thing, we focus on the front end, i.e
optimizing the R1CS so that less memory is occupied, no
matter what specific back end is used.

5) Why zk-SNARKs Take Huge Resources: zk-SNARKs are
completely different from a regular computer. In a regular
computer, the main objective is to calculate the result, thus
a variable is not needed anymore as long as no other variables
rely on it, and is wiped out by either the garbage collector or
the compiler. Therefore, jumps, conditions, loops, and random
accesses are implemented efficiently.

In zk-SNARKs, recall that a prover first calculates every
variable in the constraints, then generates a proof that depends
on these variables. As a consequence, all the intermediate
variables must be preserved. What’s worse, as the circuit only
supports addition, subtraction, and multiplication in Fp, it does
not natively support jumps, conditions, loops, and random
accesses. In most zk-SNARK front ends, these features are
implemented by unwinding, which is a technique mostly used
in regular compilers, originally for optimization. Fig. 3 demon-
strates the unwinding technique used by zk-SNARK front
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// Loop - Before unwinding.

1 for i← 1 to 3 do
2 a← a+ b;
3 end
// Loop - After unwinding.

4 a1 ← a+ b;
5 a2 ← a1 + b;
6 a3 ← a2 + b;
// Condition - Before unwinding.

7 if a = 1 then
// a is a boolean, i.e. the value is either

0 or 1.

8 b = c;
9 else

10 b = d;
11 end

// Condition - After unwinding.

12 t1 = c− d;
13 t2 = t1 × a;
14 b = t2 + d;

// Random access - Before unwinding.

15 a← b[i];
// Random access - After unwinding. The

following just contains the first step. The

If statement needs unwinding, too.

16 if i = 0 then
17 a← b0;
18 end
19 if i = 1 then
20 a← b1;
21 end
22 if i = 2 then
23 a← b2;
24 end

// Until all possible values of i are

enumerated.

Fig. 3: The unwinding technique used by zk-SNARK front
ends

ends.5 It is obviously extremely inefficient, but is currently
the only way to support such a calculation. Undoubtedly, even
a single instruction in a regular computer can bring a huge
number of intermediate variables, and thus incur significant
resource overhead in both CPU time and memory occupation.
As a result, a zk-SNARK circuit for a simple purpose might
require hundreds of GB memory.

6) Quadratic Arithmetic Programs (QAP): Popular zk-
SNARK systems [19] [14] [20] reduce R1CS instances
into QAP instances [32]. A QAP instance Φ is a tuple
(k,N,M,A,B,C, D), where k and N are defined in the same
way as those in R1CS, A,B,C are vectors of polynomials
over prime field F of degree M , and D is a subset of F of size

5Binary exponentiation is used by zk-SNARK front ends to reduce such a
crazy loop unwinding whenever possible. But unfortunately, not all loops can
be reduced in this way. For example, a loop updating x← a · x+ b can not
take advantage of binary exponentiation.

TABLE I: Notions

Symbol Description

S = (F1, F2) Split
H Hash function
FH Hash circuit
xpub, ypub Public inputs/outputs of a circuit
xpriv, ypriv Private inputs/outputs of a circuit
m Intermediate variables
h Hash digest of m
pk, vk Proving/verification key of a circuit
π Proof to be verified
|m|, |F | The number of variables in m and F
S = (F1, F2, ..., Fn) n-Split

M . The QAP degree M determines the time cost as well as
the memory occupation in both Setup and Prove procedures.

The two reductions from an R1CS instance to a QAP
instance are called QAP instance reduction and QAP witness
reduction. In theory, MQAP = MR1CS is the minimum suitable
QAP degree6 for an R1CS instance with kR1CS public inputs
and MR1CS constraints. Besides, in order to efficiently multiply
polynomials, Fast Fourier Transform (FFT) is adopted in real
systems, which might result in a larger QAP degree.

III. SPLIT DESIGN

In this section, we first define Split that partitions a circuit
into two components, and present the zero-knowledge proof
procedures of Split, followed by the definition of Good Split.
Then, we extend Split to n-Split that partitions a circuit into
multiple components. Finally, we justify why the memory us-
age gets reduced via Split and present examples for illustration
purposes. The symbols used in this section are listed in Table I.

A. Split and Good Split

Definition 3.1: A Split S = (F1, F2) for a zk-SNARK
circuit ypub,ypriv = F (xpub,xpriv) is a tuple (F1, F2), where
F1 and F2 are called split circuits, such that:
• Circuit h,m = F1(xpub, xpriv), where h are public

variables and m are secret variables. F1 ensures that
h← H(m), where H is a hash function.

• Circuit ypub ∩ h′,ypriv = F2(xpub,m), where h′ are
public variables. F2 ensures that h′ ← H(m) and
ypub,ypriv = F (xpub,xpriv).

Fig. 4 demonstrates the split of a circuit and the correspond-
ing original circuit.

We present how zero-knowledge proof procedures Setup,
Prove, and Verify are defined with Split.
• SetupS(1K, F, S)→ (pkS, vkS).

Given a security parameter 1K, a circuit F and a
split S = (F1, F2), a trusted party runs (pk1, vk1) ←
Setup(1K, F1) and (pk2, vk2) ← Setup(1K, F2), then
outputs a proving key pkS = (pk1, pk2) and a verification
key vkS = (vk1, vk2).

6In the real implementation in libsnark, the minimum suitable QAP degree
is MQAP = MR1CS + kR1CS + 1 as additional constraints are involved to
ensure soundness of input consistency.
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……

…… …… …… ……

Fig. 4: The split (F1, F2) of original circuit F . Variables in
shadow are secret ones.

• ProveS(S,xpub,xpriv,ypub,ypriv, pkS)→ πS.
Given split S = (F1, F2), variables xpub, xpriv,
ypub, ypriv, and a proving key pkS = (pk1, pk2),
a prover first gets (h,m) ← F1(xpub,xpriv), then
runs π1 ← Prove(F1,xpub,xpriv,h,m, pk1) and π2 ←
Prove(F2,xpub,m,h′ ∩ ypub,ypriv, pk2), finally outputs
a proof πS = (π1, π2).

• VerifyS(xpub,ypub,h, πS, vkS)→ {0, 1}.
Given public variables xpub, ypub, h, a proof πS, and a
verification key vkS = (vk1, vk2), a verifier runs v1 ←
Verify(xpub,h, π1, vk1) and v2 ← Verify(xpub,ypub ∩
h, π2, vk2), and then outputs v1 · v2.

One might wonder whether Split can be done for any
circuit, and at random positions. Unfortunately, the answer
is no, considering performance impacts. Here, we reduce
the problem of finding a split that decreases memory usage
most effectively with the least overhead into a general graph
problem.

Problem 3.1: Let G = (V,E) be a directed, connected,
unweighted, acyclic graph. Let s be a source node, and t be
a sink node. Denote by (S,T) a cut of G, which is a node
partition such that s ∈ S and t ∈ T. Let capacity(S,T) be
the number of edges leaving S and entering T. Find a cut
such that

• f(S,T) = max{|S|, |T|} + H · capacity(S,T) gets
minimized, where H > 0 is a constant number, and

• f(S,T) < |V|
Reduction: Given a circuit ypub,ypriv = F (xpub,xpriv), and

denote all variables as Vvar. Let V = Vvar − xpub. For any
two variables x, y in V, (x, y) ∈ E if and only if x is a
parent variable of y in the circuit. Solve Problem 3.1 for graph
G = (V,E), and calculate an optimal cut (S,T). For our
purpose we require that xpriv ⊂ S, ypub ⊂ T, and ypriv ⊂ T.
If all these conditions hold, we let m be the collection of nodes
with at least one edge leaving S. Then the circuit F is split into
h,m = F1(xpub,xpriv) and ypub ∩ h′,ypriv = F2(xpub,m),
where h = h′ = H(m). If any of the above relationships
does not hold, one can perform the following transformation:
for ∀vx ∈ xpriv 6⊂ S, all the calculations of vx are in F2,
thus we add a variable mx into m such that mx ← vx · 1
in F1, and replace vx with mx in F2. Similarly, for ∀vy ∈
ypub ∩ypriv 6⊂ T, the output value is already calculated in F1,

therefore we add my into m such that my ← vy ·1 in F1, and
v′y ← my · 1 in F2. After this transformation, one gets a split
instance reduced from the original circuit.

However, since Problem 3.1 is hard to solve, we turn to
consider Good Split, which reduces memory usage effectively
without much overhead. Note that not every circuit accepts a
good split, and only those circuits whose minimum cuts are
sufficiently small might have good splits.

Definition 3.2: A Good Split is a Split S = (F1, F2) such
that:
• |m| � |F |, where m is defined in Def. 3.1 and |F | is

defined in Sec. II-B3.
• max{|F1|, |F2|} is relatively small.
The performance analysis is given in Sec. IV-B.

B. n-Split

A Good Split reduces the memory usage effectively. Then
multiple Good Splits should result in an even better optimiza-
tion. Here, we extend the concept of Split to n-Split.

Definition 3.3: An n-Split, where n ≥ 3, for a zk-SNARK
circuit ypub,ypriv = F (xpub,xpriv) is a tuple (Fi∈[1,n]), where
Fi∈[1,n] are n circuits, such that:
• Circuit h1,m1 = F1(xpub,xpriv), where h1 are public

variables and m are secret variables. F1 ensures that
h1 ← H(m1), with H being a hash function.

• Circuit h′i−1 ∩ hi,mi = Fi(xpub,mi−1), where h′i−1
and hi are public variables and mi are secret variables.
Fi ensures that h′i−1 ← H(mi−1) and hi ← H(mi).
(i ∈ [2, n− 1])

• Circuit ypub ∩ h′n−1,ypriv = Fn(xpub,mn−1), where
h′n−1 are public variables. Fn ensures that h′n−1 ←
H(mn−1), and ypub,ypriv = F (xpub,xpriv).

Similarly, we present the procedures Setup, Prove, and
Verify for n-Split here.
• SetupMS(1K, F, S)→ (pkMS, vkMS).

Given a security parameter 1K, a circuit F and split
S = (Fi∈[1,n]), a trusted party runs (pki, vki) ←
Setup(1K, Fi) (i ∈ [1, n]), and then outputs a proving
key pkMS = (pki∈[1,n]) and a verification key vkMS =
(vki∈[1,n]).

• ProveMS(S,xpub,xpriv,ypub,ypriv, pkMS)→ πMS.
Given a split S = (Fi∈[1,n]), variables xpub, xpriv, ypub,
ypriv, and a proving key pkMS = (pki∈[1,n]), a prover
runs:

– (h1,m1)← F1(xpub,xpriv)
– (h′i−1 ∩ hi,mi)← Fi(xpub,mi−1) (i ∈ [2, n− 1])
– (ypub ∩ h′n−1,ypriv)← Fn(xpub,mn−1)
– π1 ← Prove(F1,xpub,xpriv,h1,m1, pk1)
– πi ← Prove(Fi,xpub,mi−1,h

′
i−1∩hi,mi, pki) (i ∈

[2, n− 1])
– πn ← Prove(Fn,xpub,mn−1,ypub ∩ h′n−1,ypriv,

pkn)

and then outputs a proof πMS = (πi∈[1,n]).
• VerifyMS(xpub,hi∈[1,n], πMS, vkMS)→ {0, 1}.

Given public variables xpub, hi∈[1,n], a proof πMS, and a
verification key vkMS = (vki∈[1,n]), a verifier runs:
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– v1 ← Prove(F1,xpub,h1, π1, vk1)
– vi ← Prove(Fi,xpub,h

′
i−1 ∩hi, πi, vki) (i ∈ [2, n−

1])
– vn ← Prove(Fn,xpub,ypub ∩ h′n−1, πn, vkn)

and then outputs
∏

i∈[1,n] vi.
The definition of Good Split is also extended as below.
Definition 3.4: A Good n-Split is an n-Split S = (F1, F2,

. . . , Fn) such that |m| � |F | and max{|F1|, |F2|, . . . , |Fn|}
is relatively small.

C. How the Memory Usage Get Reduced by Split

The number of variables in a circuit determines the memory
usage. Therefore, to reduce the memory usage, the number of
variables must be significantly reduced. Recall that one of the
main differences between a zk-SNARK system and a regular
computer is whether intermediate variables are kept or wiped
out. Even if an intermediate variable is no longer needed in
a later stage, it has to be kept for the whole lifetime in zk-
SNARKs.

ℋ ℋ

A circuit having a Good Split Split circuit 1 Split circuit 2

Fig. 5: How Split works in the front-end view

As long as intermediate variables are no longer needed in a
later stage, our Split scheme can remove them by partitioning
the circuit. Fig. 5 shows an example circuit that is ideal for
partition. In this example, the circuit is cut by replicating
the shadowed variables to get two components, where some
variables only exist in the first component. With this split, the
two generated circuits replace the original one by using the
common variables as the secret outputs of the first circuit, and
also the secret inputs of the second circuit. Provers only need
nearly a half memory to generate the proof by applying the
zero-knowledge protocol to these two circuits sequentially.

When processing the second circuit, the input values should
be the output values of the first circuit. However, remember
that a prover is able to choose arbitrary input values, a
malicious prover may inject other input values into the second
circuit so that the final output changes. This breaks the security
properties of zk-SNARKs. To prevent it from happening, a
hash algorithm should be involved in both circuits and the
digest of the common variables is considered a public output.
A malicious prover can not alter the input values of the second
circuit anymore, as he/she can’t find another group of input
values that produce the same digest.

Involving a hash circuit causes overhead, thus the hash al-
gorithm needs to be optimized for zk-SNARKs which requires

as few constraints and variables as possible. Additionally, our
Split construction is suitable for circuits that can be partitioned
with as few common variables as possible. Generally, loops
are ideal structures for a split, as a lot of intermediate variables
are generated inside an iteration, and these variables become
obsolete as long as an iteration ends.

D. Examples

Here, we present two examples to demonstrate the split
of a circuit in a straightforward way. Fig. 6 presents a zero-
knowledge version of the Fibonacci series algorithm, in which
a prover persuades a verifier he/she knows a secret value x
(no more than the constant n) that is corresponding to the
given Fibonacci number v at index x, without leaking the
value x. Recall that statements like loop are unrolled by the
front-end compiler, as mentioned in Sec. II-B2. Therefore, the
size of the circuit implementing Fig. 6 is almost linear to the
constant number n, which causes a high memory occupation.
The number of constraints of the circuit is no less than 4n.7

There is a Good Split for Fibonacci Series, dividing the circuit
into two components, shown in Fig. 7 and Fig. 8, respectively.
The split is applied in the middle of the for-loop, saving all the
variables that may be used later as intermediate ones m and
its hash value h. A malicious prover can not alter the output
value v, as otherwise, the output h of Fig. 8 would change.
Obviously, this is a Good Split, as it follows the definition in
Sec. III-A:
• |m| = 4� |F | ≈ 4n
• max{|F1|, |F2|} ≈ 2n+ |FH|, which is almost the mini-

mum possible value, where |FH| stands for the additional
overhead of the hash algorithm.

and it saves almost 50% of memory space with little extra
overhead. Similarly, an n-Split can be applied to save more
memory spaces, but with more overhead.

constant : n: The maximum value of the input x.
secret input : x: An index of Fibonacci series.
public output: v: The Fibonacci number at index x.

1 a← 0;
2 b← 1;
3 for i← 1 to n do
4 c← a+ b;
5 a← b;
6 b← c;
7 if i = x then
8 v ← a;
9 end

10 end

Fig. 6: Example Code of Fibonacci Series (Suitable for a Good
Split)

7For simplification, we count each statement as a constraint, and ignore the
unrolling for if-statement that the zk-SNARK compilers actually do. Readers
are only required to understand what the loop unrolling is, and may ignore
other unrolling details here.
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constant : n: The maximum value of the input x.
secret input : x: An index of Fibonacci series.
secret output : m: Intermediate values that may be

used later.
public output: h: The hash value of m.

1 a← 0;
2 b← 1;
3 for i← 1 to bn2 c do
4 c← a+ b;
5 a← b;
6 b← c;
7 if i = x then
8 v ← a;
9 end

10 if i = bn2 c then
// Unlike others, this if-statement is

free of charge with loop unrolling.

11 m← (a, b, c) ; // Save variables.

12 h← H(m) ; // Get the hash value.

13 end
14 end

Fig. 7: Example Code of Fibonacci Series (Split - Component
1)

constant : n: The maximum value of the input x.
secret input : m: Intermediate values.
public output: h: The hash value of m.
public output: v: The Fibonacci number at index x.

1 h← H(m) ;
2 (a, b, c)←m ; // Load saved variables.

3 for i← bn2 c+ 1 to n do
4 c← a+ b;
5 a← b;
6 b← c;
7 if i = x then
8 v ← a;
9 end

10 end

Fig. 8: Example Code of Fibonacci Series (Split - Component
2)

Fig. 9 demonstrates another example in which a prover
persuades a verifier he/she knows a secret sequence a that
has the longest increasing sub-sequence of length l, without
revealing a. Although it seems that all previous variables might
be used in the future, the real case is that it also has Good
Splits. In each iteration, new variables are generated as long
as they have a chance to be updated. So in Fig. 9, although
fi ← fj + 1 occurs when the condition aj ≤ ai ∧ fi < fj
holds, fi is still updated even if the above condition does not
hold. Recall the unrolling details, where the compiler unrolls
the if-statement into an assignment, the value of a variable is
updated by both the true condition and the false condition, and

thus obsolete variables are generated for such an update. Same
with Fig. 6, there are Good Splits by partitioning between
every two iterations, and therefore the result is omitted due to
the space limitation.

constant : Length n of the input sequence.
secret input : A sequence a of a fixed length n.
public output: The length l of the longest increasing

sub-sequence.

1 l← 0;
2 for i← 1 to n do
3 fi ← 1;
4 for j ← 1 to i do
5 if aj ≤ ai and fi < fj then
6 fi ← fj + 1;
7 end
8 end
9 if l < fi then

10 l← fi;
11 end
12 end

Fig. 9: Example Code of the Longest Increasing Subsequence
problem (Suitable for a Good Split)

IV. ANALYSIS

Readers may wonder whether our Split construction
breaks the security properties of zk-SNARKs introduced in
Sec. II-B1, how exactly our construction saves the memory us-
age, and whether the performance in CPU times is decreased.
In this section, we first carry out a security analysis showing
that all three security properties are preserved, then perform
a performance analysis indicating how much the memory
gets reduced and how much the computational overhead gets
involved.

A. Security Analysis

Theorem 4.1: Assume that the underlying zk-SNARK
scheme satisfies completeness, soundness, zero-knowledge,
and that the hash function satisfies the second preimage
security and preimage security, then our Split construction
is a zero-knowledge proof system satisfying completeness,
soundness, and zero-knowledge.

To prove Theorem 4.1, we first introduce the definition
of the three properties of zk-SNARKs [20] as Def. 3.1, and
prove Lemma 4.1 under the hash assumption presented in
Theorem 4.1.

Definition 4.1: A zk-SNARK scheme has the following
properties:
• Completeness. For all λ ∈ N and for all

(F,xpub,xpriv,ypub,ypriv) ∈ L:

Pr

[
Verify(xpub,ypub, π, vk) = 1

∣∣∣
(pk, vk, trap)← Setup(1K, F )

π ← Prove(F,xpub,xpriv,ypub,ypriv, pk)

]
= 1
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• Soundness. For all PPT adversaries A there exists a PPT
extractor EA such that:

Pr

[
Verify(xpub,ypub, π, vk) = 1

(F,xpub,xpriv,ypub,ypriv) /∈ L

∣∣∣
(pk, vk, trap)← Setup(1K, F )

(xpub,xpriv,ypub,ypriv, π)← A||EA(pk, vk)

]
≤ negl(λ)

• Zero-knowledge. For all λ ∈ N, for all
(F,xpub,xpriv,ypub,ypriv) ∈ L and for all PPT
adversaries A, the following two distributions are
statistically close:

D0 = {π0 ← Prove(F,xpub,xpriv,ypub,ypriv, pk) :

(pk, vk, trap)← Setup(1K, F )}

D1 = {π1 ← Simulate(F,xpub,ypub, pk, trap) :

(pk, vk, trap)← Setup(1K, F )}

Lemma 4.1: Under the assumption in Theorem 4.1, a Split
(F1, F2) of the original circuit F satisfies

(F,xpub,xpriv,ypub,ypriv) ∈ L
⇐⇒ ∃(h,m,h′,m′), (xpub,xpriv,h,m, pk1) ∈ L1

∧ (xpub,m
′,ypub ∩ h′,ypriv, pk2) ∈ L2

∧ h = h′

(1)

Proof of Lemma 4.1: Because the hash function satisfies the
second preimage security, a prover is unable to find a m′ 6= m
such that h = H(m′), which means Pr [m = m′|h = h′] = 1.
Thus, if ∃(h,m,h′,m′), (xpub,xpriv,h,m, pk1) ∈ L1∧(xpub,
m′,ypub ∩ h′,ypriv, pk2) ∈ L2 ∧ h = h′ holds, because h =
h′, we have m = m′, hence h,m = F1(xpub, xpriv) and
ypub ∩ h,ypriv = F2(xpub,m), then by the definition of zero-
knowledge procedure of Split, we know ypub,ypriv = F (xpub,
xpriv) holds, i.e. (F,xpub,xpriv,ypub,ypriv) ∈ L. On the other
hand, if (F,xpub,xpriv,ypub,ypriv) ∈ L holds, i.e. ypub,ypriv =
F (xpub,xpriv) holds, let h′,m′ = h,m = F1(xpub, xpriv), we
have ypub ∩ h,ypriv = F2(xpub,m), which is guaranteed by
the definition of Split. Therefore, (xpub,xpriv,h,m, pk1) ∈ L1

and (xpub,m
′,ypub∩h′,ypriv, pk2) ∈ L2 hold while h = h′. �

Proof of Theorem 4.1: A Split (F1, F2) of the original
circuit F has:

• Completeness. For all λ ∈ N and for all (F,xpub,xpriv,
ypub,ypriv) ∈ L, from Lemma 4.1 we have (xpub,xpriv,h,
m, pk1) ∈ L1 and (xpub,m

′,ypub ∩ h′,ypriv, pk2) ∈ L2

holds. Hence,

P1 = Pr

[
Verify(xpub,h, π1, vk) = 1

∣∣∣
(pk1, vk1, trap)← Setup(1K, F1)

π1 ← Prove(F1,xpub,xpriv,h,m, pk1)

]
= 1

P2 = Pr

[
Verify(xpub,ypub ∩ h′, π2, vk2) = 1

∣∣∣
(pk2, vk2, trap)← Setup(1K, F2)

π2 ← Prove(F2,xpub,m,ypub ∩ h′,ypriv, pk2)

]
= 1

From the zero-knowledge proof procedures of Split we
know VerifyS(xpub,ypub,h, πS, vkS) = Verify(xpub,h,

π1, vk1) · Verify(xpub,ypub ∩ h, π2, vk2). It follows that

Pr

[
VerifyS(xpub,ypub,h, πS, vkS) = 1

∣∣∣
(pkS, vkS, trap)← SetupS(1

K, F )

π ← ProveS(S,xpub,xpriv,ypub,ypriv, pkS)

]
=P1 · P2 · Pr

[
m = m′|h = h′] = 1

Hence the completeness is satisfied.
• Soundness. For all PPT adversaries A, denote EA as a

PPT extractor. From the soundness of F1 and F2 we have

Pr

[
Verify(xpub,h, π1, vk1) = 1

(F1,xpub,xpriv,h,m) /∈ L

∣∣∣
(pk1, vk1, trap)← Setup(1K, F1)

(xpub,xpriv,h,m, π1)← A||EA(pk1, vk1)

]
≤ negl(λ)

Pr

[
Verify(xpub,h ∩ ypub, π2, vk2) = 1

(F2,xpub,m
′,h′ ∩ ypub,ypriv) /∈ L

∣∣∣
(pk2, vk2, trap)← Setup(1K, F2)

(xpub,m
′,h′ ∩ ypub,ypriv, π2)← A||EA(pk2, vk2)

]
≤ negl(λ)

Thus, to get VerifyS = 1|(F,xpub,xpriv,ypub,ypriv) /∈ L,
adversary A can only select (h,m,h′,m′,xpub,xpriv,
ypub,ypriv) such that:

– (F1,xpub,xpriv,h,m) ∈ L
– (F2,xpub,m

′,h′ ∩ ypub,ypriv) ∈ L
– h = h′

From Lemma 4.1 immediately we know the three con-
ditions above hold if and only if (F,xpub,xpriv,ypub,
ypriv) ∈ L. A contradiction is derived. Hence,

Pr

[
VerifyS(xpub,ypub,h, πS, vkS) = 1

(F,xpub,xpriv,ypub,ypriv) /∈ L

∣∣∣
(pkS, vkS, trap)← SetupS(1

K, F )

π ← A||EA(pkS, vkS)

]
≤ negl(λ)

Therefore the soundness is satisfied.
• Zero-knowledge. Because the hash function satisfies

preimage security, the adversary is unable to learn any-
thing of m from the hash value h. Therefore, for all
λ ∈ N, for all (F,xpub,xpriv,ypub,ypriv) ∈ L and for all
PPT adversaries A, the following two distributions are
statistically close:

D0 = {πS0 ← ProveS(S,xpub,xpriv,ypub,ypriv, pkS) :

(pkS, vkS, trap)← SetupS(1
K, S)}

D1 = {πS1 ← Simulate(S,xpub,ypub,h, pkS, trap) :

(pkS, vkS, trap)← SetupS(1
K, S)}

Hence the zero-knowledge property is satisfied. �

B. Performance Analysis

1) Computational Overhead:
Claim 4.1: Denote by mbits the bit size of intermediate vari-

ables for a Split S, Hbits the input bit size of a hash algorithm,
and Hoverhead the overhead of a hash circuit, then the computa-
tional overhead can be roughly expressed as 2·dmbits

Hbits
e·Hoverhead

for a Split, and
∑i=n−1

i=1 2 · dmbits,i

Hbits
e ·Hoverhead for an n-Split.

For QAP-based zk-SNARKs, the time complexities of
Setup, Prove, and Verify [33] are respectively O(M),
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O(M logM), and O(1), where M stands for the number of
R1CS constraints, and the total time cost of running multiple
zk-SNARK instances is the sum of them. A Split (F1, F2)
increases the time cost as a hash algorithm is involved in
components. Take SHA256 as an example. The SHA256
procedure adds 34,324 constraints per 128-bit input8 to the
circuit. If m is more than 512 bits, more hash circuits
are introduced, causing more computational overhead. The
overhead can be roughly expressed as dmbits

Hbits
e · Hoverhead for

the calculation of h ← H(m). Since a Split involves two
hash procedures for the two split circuits F1 and F2, the
total overhead can be expressed as 2 · dmbits

Hbits
e · Hoverhead,

Therefore, Sec. III-A indicates that a Good Split should have
|m| � |F |, which means the variable size of |m| should
be much less than the number of constraints of the original
circuit so that the computational overhead is acceptable. Sim-
ilarly, for an n-Split, each collection of intermediate variables
mi(i ∈ [1, n− 1]) involves two hash circuits, resulting in an
overhead of 2 · dmbits,i

Hbits
e ·Hoverhead, thus the total overhead of

an n-Split is expressed as
∑i=n−1

i=1 2 · dmbits,i

Hbits
e ·Hoverhead.

2) Memory Usage:
Claim 4.2: The memory usage can be reduced to

max{|F1|, |F2|} for a Split, and max{|Fi|}(i ∈ [1, n]) for
an n-Split.

The memory usages in the Setup and the Prove procedure
are roughly linear to the number of the R1CS constraints, and
the memory usage of running multiple zk-SNARK instances is
the maximum value among them. Therefore, max{|F1|, |F2|}
stands for the memory occupation of a Split (F1, F2). Thus,
the circuit should be split as “evenly” as possible (while
keeping |m| relatively small), so that the memory usage can
be reduced to nearly half. Similarly, max{|Fi|}(i ∈ [1, n])
stands for the memory occupation of an n-Split (Fi∈[1,n]),
which can further reduce the memory, but with more over-
head. One should carefully consider the trade-off between the
computational overhead and the memory occupation.

V. EVALUATION

In this section, we set up a series of experiments on a
server, illustrating the performance of Split in CPU time and
memory usage, to demonstrate how our construction behaves
in practice. We analyze the experimental results and explain
the effect of the QAP instance reduction on these results.

A. Experiment Setup

To evaluate our scheme and demonstrate the improvement
in memory occupation, we design a series of experiments in
a server with dual Intel(R) Xeon(R) E5-2620 v4 @ 2.10GHz
CPU9 and 128 GB RAM consisting of eight Samsung 16 GB
2133 MT/s DDR4 RDIMM. The operating system is Ubuntu
20.04.2 LTS.

8The number of constraints is obtained from the SHA256 circuit provided
by xJsnark [29].

9In our experiments, only a single core is occupied for running the zk-
SNARK toolchain. The use of dual processors is to support more RAM
modules.

A QAP-based zk-SNARK system [14] is used in our proof-
of-concept demonstration. Considering the fact that loop is
the most common structure in zk-SNARKs and also an ideal
structure for a split, and an R1CS instance consists of addition,
subtraction, and multiplication constraints, we make use of a
loop updating x← a ·x+b with different number of iterations
as the original circuit, and select the SHA256 algorithm to
implement a hash circuit that ensures the integrity of interme-
diate variables. We partition each circuit into components by
splitting the iterations.

Our program code for the circuit is written in a domain-
specific language, xJsnark [29]. The circuit is then compiled
into an R1CS instance, which is then reduced to a QAP
instance by libsnark. Finally, Setup, Proof, and Verify proce-
dures are executed.

In our experiments, we run the complete procedure of zero-
knowledge proof for both the original circuit and the split
circuits, where the following metrics are considered:
• The number of constraints of the R1CS instance, which

indicates the circuit size.
• The QAP degree of the circuit, which also indicates the

circuit size.
• The time cost of Proof.
• The memory usage of Proof.
• The time cost of Verify, which is almost constant.

B. Experiments and Results

1) Experiment I: In Experiment I, we adjust the number
of loops and generate several circuits, of which the num-
ber of constraints varies between approximately 380,000 to
11,500,000. We split the original circuit into two components,
and observe the relationship between circuit size and the
memory usage as well as the time cost between the original
one and the split ones. Each test case is repeated thirty
times and the averages are reported. The results of Proof are
illustrated in Fig. 10a and Fig. 10b, and the statistical data is
listed in Table II. Note that error bars in the figures are not
visible, as the memory usage error is less than 1 MB, while
the time cost error is about 0.5 s.

Obviously, our Split construction is more efficient for a
large-sized circuit. As the size grows, the reduced memory
occupation gets closer to almost 50%. For the time cost, things
become complex. In theory, the overhead introduced by the
hash algorithm should cause a higher time cost. But in some
test cases of the experimental results, the time cost is actually
decreased a little. This is due to the implementation of QAP
instance reduction, which is explained in Sec. V-C.

Fig. 11 shows the time cost of Verify. It gets doubled after
Split, which is as expected. As the Verify procedure takes in
milliseconds, it is acceptable.

2) Experiment II: As demonstrated earlier, a Good Split
can reduce the memory usage by up to 50%. An n-Split may
further reduce the memory usage. We design Experiment II,
where Circuit 4 in Experiment I is split into 2, 3, 4, and 5
components.

The results are reported in Fig. 12 and Table III. Similar
to Experiment I, error bars in Fig. 12 are not visible. The
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TABLE II: Performance before and after Split of different circuit sizes

Original Circuit Split Circuits
Case Constraints Degree Time (s) Memory (MB) Constraints Degree Time (s) Memory (MB)

Circuit 1 383,381 393,216 10.0336 1,173 501,306 524,288 12.7547 851
Circuit 2 1,150,037 1,179,648 30.8620 3,486 1,267,930 1,310,720 33.7338 2,221
Circuit 3 1,916,725 2,097,152 50.6133 5,742 2,034,618 2,097,152 50.5976 3,258
Circuit 4 3,833,381 4,194,304 104.3493 10,763 3,951,306 4,194,304 101.2589 5,901
Circuit 5 7,666,725 8,388,608 212.2286 21,413 3,892,309 8,388,608 208.8059 10,918
Circuit 6 11,500,037 1,258,2912 341.2828 32,513 11,617,930 12,582,912 336.5552 16,421
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Fig. 10: The comparison of memory usage and CPU time cost
before and after Split
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Fig. 12: The memory usage and time cost in Proof of n-Split
circuits

TABLE III: Performance of n-Split circuits

n-Split Constraints Degree Time (s) Memory (MB)
Original 3,383,381 4,194,304 104.4845 10,763

2 3,951,306 4,194,304 101.6369 5,901
3 4,069,199 4,718,592 121.1280 4,016
4 4,187,092 4,259,840 108.9389 3,494
5 4,305,049 5,242,880 126.2172 2,919

data indicates that as the number of split components grows,
the memory usage is reduced further, but the reduced rate
gets slower. On the other hand, the computational overhead
continues to grow, which makes n-Split less efficient, but still
acceptable. Also similar to Experiment I, the time cost of 3-
Split is abnormal due to the same reason, which is explained
in the next subsection.

Fig. 13 illustrates the time cost of Verify. It is linear to the
number of split components. Thus, the split number should be
decided after careful considerations, to trade-off between the
memory occupation and the computational overhead.

From the experimental results, one can conclude that split-
ting into 5 components optimizes the memory usage to 27%,
while having only 20% additional CPU time for the demon-
strated circuit.

C. QAP Instance Reduction

As mentioned in Sec. II-B6, an R1CS instance is converted
into a QAP instance by QAP instance reduction. As FFT
is used to efficiently multiply polynomials, the QAP degree
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Fig. 13: The time cost in Verify of n-Split circuits

might be larger to meet the need of FFT. A radix-2 FFT imple-
mentation has time complexity O(N log(N)), which requires
the domain size to be of the form 2k for a positive integer k.
In libsnark, an advanced version of radix-2 FFT named step
radix-2 FFT10, relaxes the domain size requirement to be of
the form 2k +2r, where r is also a positive integer. Therefore,
for a QAP instance of degree M , libsnark pads the degree
to 2blog2 Mc−1 + 2blog2(M−2

blog2 Mc−1)c which is the minimum
integer that is no smaller than M and can be represented with
the form of 2k + 2r. As the radix-2 FFT algorithm brings
a significant optimization for time cost, the padding scheme
causes a necessary overhead.

Back to our Split construction. Denote by MR1CS, M (1)
R1CS,

M
(2)
R1CS the number of R1CS constraints of the original circuit

F and the split circuits F1, F2, respectively, and denote by
MQAP, M (1)

QAP, M (2)
QAP similarly for the QAP degrees. As

M
(1)
R1CS + M

(2)
R1CS = MR1CS + Moverhead

R1CS , we have M
(1)
R1CS +

M
(2)
R1CS > MR1CS. In theory, this means that the time cost

of the split circuits is greater than the original. But due to
the padding above, we have M

(1)
R1CS + M

(2)
R1CS > MR1CS ;

M
(1)
QAP + M

(2)
QAP > MQAP which brings out the “abnormal”

results in time cost. Moreover, it is obvious that, when MR1CS

is larger, the chance of having M (1)
QAP+M

(2)
QAP ≤MQAP is also

larger.

VI. CONCLUSION AND FUTURE RESEARCH

We propose a hash-based memory optimization method for
zk-SNARKs that can greatly reduce the memory occupation
for resource-constrained provers. The high memory consump-
tion is a burden to make zero-knowledge into practice when
users do not have sufficient memory for a large-scale zero-
knowledge proof. In our scheme, we split the circuit into
components, and ensure the integrity of intermediate variables
by introducing the hash circuit. We show that our construction
does not compromise the three security properties of zk-
SNARKs. The experimental results indicate that Good Split
is memory-efficient and the computational overhead is low,
making zero-knowledge proofs a bit closer to ordinary users.

10See https://github.com/scipr-lab/libfqfft for more details.

In our evaluation, we choose SHA256 as the hash algorithm,
as it is widely implemented in popular zk-SNARK toolchains.
To take a step forward towards further reducing the overhead in
our Split construction, hash algorithms that are optimized for
zk-SNARKs can be chosen, as they have smaller circuit sizes.
MiMC [34] is a family of block ciphers and hash functions
primarily designed for SNARK applications. It explores cryp-
tographic primitives with low multiplicative complexity, mo-
tivated by recent advances in practical applications of secure
multi-party computation, fully homomorphic encryption, and
zero-knowledge proofs. Grassi et al. presented Poseidon [35],
a modular framework and concrete instances of cryptographic
hash functions, which uses up to 8x fewer constraints per
message bit than Pedersen Hash. Once these hash functions
get well-implemented in popular toolchains, our Split scheme
can be applicable to more algorithms as the overhead can be
further reduced.

As long as there is a Good Split for a circuit, the memory
occupation can be greatly minimized while the computational
overhead can be low. However, splitting the circuit is hard.
A Good Split should involve as few intermediate variables as
possible, to reduce the number of relatively expensive hash
circuits. An approximate algorithm to find a Good Split for
arbitrary circuits can enhance the application of Split.
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